功率mos管為何會被燒毀?都進來看看!

2020-12-10 電子工程專輯

mos在控制器電路中的工作狀態:開通過程(由截止到導通的過渡過程)、導通狀態、關斷過程(由導通到截止的過渡過程)、截止狀態。


Mos主要損耗也對應這幾個狀態,開關損耗(開通過程和關斷過程),導通損耗,截止損耗(漏電流引起的,這個忽略不計),還有雪崩能量損耗。只要把這些損耗控制在mos承受規格之內,mos即會正常工作,超出承受範圍,即發生損壞。而開關損耗往往大於導通狀態損耗,不同mos這個差距可能很大。


過流----------持續大電流或瞬間超大電流引起的結溫過高而燒毀;

過壓----------源漏過壓擊穿、源柵極過壓擊穿;

靜電----------靜電擊穿,CMOS電路都怕靜電;

Mos開關原理(簡要):Mos是電壓驅動型器件,只要柵極和源級間給一個適當電壓,源級和漏級間通路就形成。這個電流通路的電阻被成為mos內阻,就是導通電阻<Rds(on)>。這個內阻大小基本決定了mos晶片能承受的最大導通電流(當然和其它因素有關,最有關的是熱阻),內阻越小承受電流越大(因為發熱小)。

Mos問題遠沒這麼簡單,麻煩在它的柵極和源級間,源級和漏級間,柵極和漏級間內部都有等效電容。所以給柵極電壓的過程就是給電容充電的過程(電容電壓不能突變),所以mos源級和漏級間由截止到導通的開通過程受柵極電容的充電過程制約。


然而,這三個等效電容是構成串並聯組合關係,它們相互影響,並不是獨立的,如果獨立的就很簡單了。


其中一個關鍵電容就是柵極和漏級間的電容Cgd,這個電容業界稱為米勒電容。這個電容不是恆定的,隨柵極和漏級間電壓變化而迅速變化。這個米勒電容是柵極和源級電容充電的絆腳石,因為柵極給柵-源電容Cgs充電達到一個平臺後,柵極的充電電流必須給米勒電容Cgd充電。這時柵極和源級間電壓不再升高,達到一個平臺,這個是米勒平臺(米勒平臺就是給Cgd充電的過程),米勒平臺大家首先想到的麻煩就是米勒振蕩。(即,柵極先給Cgs充電,到達一定平臺後再給Cgd充電)。


因為這個時候源級和漏級間電壓迅速變化,內部電容相應迅速充放電,這些電流脈衝會導致mos寄生電感產生很大感抗。這裡面就有電容、電感、電阻組成震蕩電路(能形成2個迴路),並且電流脈衝越強頻率越高震蕩幅度越大,所以最關鍵的問題就是這個米勒平臺如何過渡。


Gs極加電容,減慢mos管導通時間,有助於減小米勒振蕩。防止mos管燒毀。

快的充電會導致激烈的米勒震蕩,但過慢的充電雖減小了震蕩,但會延長開關從而增加開關損耗。Mos開通過程源級和漏級間等效電阻相當於從無窮大電阻到阻值很小的導通內阻(導通內阻一般低壓mos只有幾毫歐姆)的一個轉變過程。


比如一個mos最大電流100a,電池電壓96v,在開通過程中,有那麼一瞬間(剛進入米勒平臺時)mos發熱功率是P=V*I(此時電流已達最大,負載尚未跑起來,所有的功率都降落在MOS管上),P=96*100=9600w!這時它發熱功率最大,然後發熱功率迅速降低直到完全導通時功率變成100*100*0.003=30w(這裡假設這個mos導通內阻3毫歐姆),開關過程中這個發熱功率變化是驚人的。


如果開通時間慢,意味著發熱從9600w到30w過渡的慢,mos結溫會升高的厲害。所以開關越慢,結溫越高,容易燒mos。為了不燒mos,只能降低mos限流或者降低電池電壓。比如給它限制50a或電壓降低一半成48v,這樣開關發熱損耗也降低了一半,不燒管子了。


這也是高壓控容易燒管子原因,高壓控制器和低壓的只有開關損耗不一樣(開關損耗和電池端電壓基本成正比,假設限流一樣),導通損耗完全受mos內阻決定,和電池電壓沒任何關係。


其實整個mos開通過程非常複雜。裡面變量太多。總之就是開關慢不容易米勒震蕩,但開關損耗大,管子發熱大,開關速度快理論上開關損耗低(只要能有效抑制米勒震蕩)。但是往往米勒震蕩很厲害(如果米勒震蕩很嚴重,可能在米勒平臺就燒管子了),反而開關損耗也大,並且上臂mos震蕩更有可能引起下臂mos誤導通,形成上下臂短路。


所以這個很考驗設計師的驅動電路布線和主迴路布線技能。最終就是找個平衡點(一般開通過程不超過1us)。開通損耗這個最簡單,只和導通電阻成正比,想大電流低損耗找內阻低的。

Mos挑選的重要參數簡要說明,以datasheet舉例說明:

柵極電荷;Qgs, Qgd:


指的是柵極從0v充電到對應電流米勒平臺時總充入電荷(實際電流不同,這個平臺高度不同,電流越大,平臺越高,這個值越大)。這個階段是給Cgs充電(也相當於Ciss,輸入電容)。

指的是整個米勒平臺的總充電電荷(在這稱為米勒電荷)。這個過程給Cgd(Crss,這個電容隨著gd電壓不同迅速變化)充電。


下面是型號stp75nf75:


我們普通75管Qgs是27nc,Qgd是47nc。結合它的充電曲線。

進入平臺前給Cgs充電,總電荷Qgs 27nc,平臺米勒電荷Qgd 47nc。


而在開關過衝中,mos主要發熱區間是粗紅色標註的階段。從Vgs開始超過閾值電壓,到米勒平臺結束是主要發熱區間。其中米勒平臺結束後mos基本完全打開這時損耗是基本導通損耗(mos內阻越低損耗越低)。


閾值電壓前,mos沒有打開,幾乎沒損耗(只有漏電流引起的一點損耗)。其中又以紅色拐彎地方損耗最大(Qgs充電將近結束,快到米勒平臺和剛進入米勒平臺這個過程發熱功率最大(更粗線表示)。


所以一定充電電流下,紅色標註區間總電荷小的管子會很快度過,這樣發熱區間時間就短,總發熱量就低。所以理論上選擇Qgs和Qgd小的mos管能快速度過開關區。


導通內阻Rds(on);這個耐壓一定情況下是越低越好。不過不同廠家標的內阻是有不同測試條件的。測試條件不同,內阻測量值會不一樣。同一管子,溫度越高內阻越大(這是矽半導體材料在mos製造工藝的特性,改變不了,能稍改善)。所以大電流測試內阻會增大(大電流下結溫會顯著升高),小電流或脈衝電流測試,內阻降低(因為結溫沒有大幅升高,沒熱積累)。

有的管子標稱典型內阻和你自己用小電流測試幾乎一樣,而有的管子自己小電流測試比標稱典型內阻低很多(因為它的測試標準是大電流)。當然這裡也有廠家標註不嚴格問題,不要完全相信。


所以選擇標準是------------找Qgs和Qgd小的mos管,並同時符合低內阻的mos管。


聲明:以上文章內容整理於網絡,如涉及到版權問題,請第一時間與我們聯繫。這裡是電子工程師學習天地,同時歡迎大家留言評論一起交流~


張飛實戰電子為公眾號的各位粉絲,開通了專屬學習交流群,想要加群學習討論/領取文檔資料的同學都可以掃描圖中運營二維碼一鍵加入哦~ 

(廣告、同行勿入)

相關焦點

  • 功率MOS管燒毀的原因(米勒效應)
    只要把這些損耗控制在mos承受規格之內,mos即會正常工作,超出承受範圍,即發生損壞。而開關損耗往往大於導通狀態損耗,不同mos這個差距可能很大。 Gs極加電容,減慢mos管導通時間,有助於減小米勒振蕩。防止mos管燒毀。
  • 防止MOS管燒毀,先要知道為什麼它會燒?
    Gs極加電容,減慢mos管導通時間,有助於減小米勒振蕩。防止MOS管燒毀。 過快的充電會導致激烈的米勒振蕩,但過慢的充電雖減小了振蕩,但會延長開關從而增加開關損耗。 比如一個MOS最大電流100a,電池電壓96v,在開通過程中,有那麼一瞬間(剛進入米勒平臺時)MOS發熱功率是P=V*I(此時電流已達最大,負載尚未跑起來,所有的功率都降落在MOS管上),P=96*100=9600w
  • 器件發熱導致的MOS管損壞之謎,終於解開了
    MOS 管作為半導體領域最基礎的器件之一,無論是在 IC 設計裡,還是板級電路應用上,都十分廣泛,尤其在大功率半導體領域。然而大功率逆變器MOS管,工作的時候,發熱量非常大,如果MOS管散熱效果不好,溫度過高就可能導致MOS管的燒毀,進而可能導致整個電路板的損毀。
  • 30A的MOS現在價格都下探到1塊了,為什麼你還在用繼電器?
    其他的在用商用車上電子帶 mcu 的器件裡,基本上都已經換成 mos 管了。要是沒有 mcu,那就沒辦法了。不過 mos 管,要考慮長時間通電時的發熱,比如 20 多 A 的 mos,我們器件管腳給客戶的標稱限流就是 9A。路人丙:上萬隻繼電器忠實粉絲、國內多少 A 或 1000V 都是虛有其標、複雜環境擊穿現象嚴重到讓你懷疑人生!
  • 功率mos管為何會被燒毀?真相是……
  • MOS管的發展歷程
    MOS管的發明最早可以追溯到19世紀30年代,由德國人提出了Lilienfeld場效應電晶體的概念,之後貝爾實驗室的肖特基發明者Shcokley等人也嘗試過研究發明場效應管,但是都失敗了。1949年Shcokley提出了注入少子的雙極性電晶體的概念。到了1960年,有人提出用二氧化矽改善雙極性電晶體的性能,就此MOS管來到了人世間。
  • mos管導通壓降多大?
    打開APP mos管導通壓降多大?MOS管的source和drain是可以對調的,他們都是在P型backgate中形成的N型區。在多數情況下,這個兩個區是一樣的,即使兩端對調也不會影響器件的性能。這樣的器件被認為是對稱的。
  • MOS管功率損耗怎麼測?
    打開APP MOS管功率損耗怎麼測?「MOSFET」是英文MetalOxideSemicoductorFieldEffectTransistor的縮寫,譯成中文是「金屬氧化物半導體場效應管」。它是由金屬、氧化物(SiO2或SiN)及半導體三種材料製成的器件。所謂功率MOSFET(PowerMOSFET)是指它能輸出較大的工作電流(幾安到幾十安),用於功率輸出級的器件。
  • MOS管自舉電路工作原理及升壓自舉電路結構圖
    假定那個開關(三極體或者mos管)已經斷開了很長時間,所有的元件都處於理想狀態,電容電壓等於輸入電壓。下面要分充電和放電兩個部分來說明這個電路。如此下去,長時間在MOS的Drink極與Source間通過的是一個N倍於工作頻率的高頻脈衝,這樣的脈衝尖峰在MOS上會產生過大的電壓應力,很快MOS管會被損壞。
  • 控制小功率無刷直流電機的MOS管被燒壞,可能是什麼原因呢?
    控制小功率無刷直流電機的MOS管被燒壞,可能是什麼原因呢?若能夠提供詳細電路圖及各元器件的型號(比如MOS管型號等)更好,由於沒電路圖,下面對這部分設計MOS管燒壞常見的可能性故障進行分析,提問者自己核對一下是否有相應的問題。
  • 三極體和MOS管的區別
    MOS管用於高頻高速電路,大電流場合,以及對基極或漏極控制電流比較敏感的地方。 MOS管不僅可以做開關電路,也可以做模擬放大,因為柵極電壓在一定範圍內的變化會引起源漏間導通電阻的變化。二者的主要區別就是:雙極型管是電流控制器件(通過基極較小的電流控制較大的集電極電流),MOS管是電壓控制器件(通過柵極電壓控制源漏間導通電阻)。
  • MOS管常見使用方法
    1.物理特性 MOS管分為N溝道和P溝道的形式,N溝道和P溝道都有增強型和耗盡型兩種。耗盡型與增強型的主要區別在於耗盡型MOS管在G端(Gate)不加電壓時有導電溝道存在,而增強型MOS管只有在開啟後,才會出現導電溝道;兩者的控制方式也不一樣,耗盡型MOS管的VGS(柵極電壓)可以用正、零、負電壓控制導通,而增強型MOS管必須使得VGS>VGS(th)(柵極閾值電壓)才行。
  • 電源工程師到底得會看多少波形?且看MOS管的GS波形分析!
    對於咱們電源工程師來講,我們很多時候都在看波形,看輸入波形,MOS開關波形,電流波形,輸出二極體波形,晶片波形,MOS管的GS波形,我們拿開關GS波形為例來聊一下GS的波形。 我們測試MOS管GS波形時,有時會看到下圖中的這種波形,在晶片輸出端是非常好的方波輸出。但一旦到了MOS管的G極就出問題了,有振蕩,這個振蕩小的時候還能勉強過關,但是有時候振蕩特別大,看著都教人擔心會不會重啟。
  • EDA365:新手該如何選擇高性能的MOS管器件?
    在一些電路的設計中,不光是開關電源電路中,經常會使用MOS管,正確選擇MOS管是硬體工程師經常遇到的問題,更是很重要的一個環節,MOS管選擇不好有可能影響到整個電路的效率和成本。那麼新手該如何選擇高性能的MOS管呢?
  • 新潔能場效應管NCE80H12在電動車控制器中的功能和用途
    那麼為何NCE80H12可以用於電動車控制器呢?其在電動車控制器中又起到什麼作用呢?南山電子來為您一一解答:電動車的主要部件就是電機和控制器,當電機確定後,控制器的質量就決定了電動車運行的好壞。作為驅動部分的開關管,MOS管的主要被關注點是耐壓,耐流值以及開關速度。MOS管是電壓驅動型器件,只要柵極G和源級S間給一個適當電壓,源級S和D間導電通路就形成。這個電流通路的電阻被稱為MOS管內阻,也就是導通電阻。這個內阻大小基本決定了MOS管晶片能承受得多大導通電流(當然和其它因素有關,如熱阻)。
  • N溝道與P溝道MOS管
    項目中最常用的為增強型mos管,分為N溝道和P溝道兩種。
  • MOS管開關時的米勒效應--通俗易懂篇
    米勒效應指在MOS管開通過程會產生米勒平臺,原理如下。理論上驅動電路在G級和S級之間加足夠大的電容可以消除米勒效應。但此時開關時間會拖的很長。一般推薦值加0.1Ciess的電容值是有好處的。下圖中粗黑線中那個平緩部分就是米勒平臺。
  • 千萬別在Vcc上直接並聯穩壓管!
    一些入門級的電源工程師常遇到這樣一個問題,在電路圖中的Vcc接晶片的地方加入了一個12V左右穩壓管。目的是為了保證晶片的電壓上限,意圖很明確,穩壓管能夠保護晶片不會因為電壓過高問題而燒毀。,此時我們計算一下穩壓管和IC以及Vcc電容共同消耗的電流:在不考慮二極體壓降的情況下,Iic+Izener+Ic=(14-12)/10=0.2A,假設佔空比為0.5,此時穩壓管和IC共同消耗的功率為12*0.2*0.5=1.2W,除掉一部分Vcc電容上的電流,雖然沒有1.2W但IC和穩壓管消耗的功率還是比較大,然後晶片的電流主要用來做mos管的驅動消耗是比較小的,所以大部分功耗在穩壓管上。
  • MOS管功率損耗竟然還可以這麼測!
    同樣重要的是,其在 On 狀態或 Off 狀態下消耗的功率非常小,實現了很高的效率,而生成的熱量很低。開關設備在極大程度上決定著 SMPS 的整體性能。開關設備的關鍵測量項目包括開關損耗、平均功率損耗等等。
  • 電子工程師都應該掌握的MOS管知識
    MOS管的source和drain是可以對調的,他們都是在P型backgate中形成的N型區。 在多數情況下,這個兩個區是一樣的,即使兩端對調也不會影響器件的性能,這樣的器件被認為是對稱的。 雙極型電晶體把輸入端電流的微小變化放大後,在輸出端輸出一個大的電流變化。