撰文 | 小柚
責編 | 兮
組蛋白的翻譯後修飾在真核細胞中發揮重要作用。其中,組蛋白H3第4位賴氨酸上的三甲基化(H3K4me3)是一類非常保守的且被廣泛研究的表觀遺傳修飾。2001年,美國西北大學醫學院的Ali Shilartifard【1】和德國德勒斯登工業大學的A.Francis共同鑑定了酵母中最早發現且唯一的H3K4甲基轉移酶SET1及其複合物,並命名為COMPASS(COMplex of Proteins Associated with Set1)【2】。此後,COMPASS在果蠅【3】和哺乳動物中的同源蛋白也先後被鑑定。哺乳動物有6種COMPASS複合體,包含具有SET結構域的不同甲基轉移酶。其中,SET1A/B介導細胞中的大部分H3K4me3修飾【4,5】,MLL3/4催化增強子處的H3K4me1【6-8】,而MLL1/2負責發育相關基因的H3K4me2和H3K4me3甲基化【9,10】。
MLL2基因對胚胎的早期發育是必需的,其突變會導致兒童肌張力障礙【11,12】。一般認為,H3K4me3富集在高表達的基因座位,與基因的激活表達相關,而越來越多的研究卻發現敲低H3K4甲基化酶,只有少量基因的表達發生了變化【9,13,14】。因此,H3K4me3在基因調控中的功能還需進一步的研究。
2020年5月11日,Ali Shilartifard教授在Nature Genetics發表研究Uncoupling histone H3K4 trimethylation from developmental gene expression via an equilibrium of COMPASS, Polycomb and DNA methylation,發現MLL2介導的H3K4me3通過拮抗轉錄異質性修飾H3K27me3和DNA甲基化,調控基因表達的機制。
Magohb是已知的受MLL2調控的基因,敲除MLL2導致Magohb的顯著降低。為進一步理解MLL2如何調控基因表達,研究者在MLL2敲除的細胞系中構建了帶mCherry標籤的Magohb基因報告載體,再利用CRISPR進行全基因組篩選,尋找在MLL2缺失條件下,介導Magohb沉默的因子。通過該方法,研究者意外地發現敲低另一個COMPASS複合體SET1A/B,能夠恢復MLL2敲除後導致的Magohb降低,說明SET1A/B參與了MLL2介導的轉錄調控。
同樣是H3K4me3甲基化酶,為什麼MLL2和SET1A/B對Magohb的調控竟是相反的呢?SET1A/B的缺失又是如何恢復由MLL2敲除導致的Magohb降低呢?值得注意的是,不僅Magohb,SET1A/B對其他MLL2依賴的基因也有相同的效果。
SET1A/B複合體可激活DNA 5mC甲基化酶DNMT1【15,16】,而DNA甲基化又與PRC複合體介導的H3K27me3修飾相關,因此研究者檢測了敲低MLL2和SET1A/B後5mC和H3K27me3的變化。確實,敲低MLL2後,MLL2靶基因的5mC和H3K27me3顯著升高,這與敲低MLL2後這些基因表達降低的現象相符,也說明MLL2缺失導致的基因表達抑制是由DNA甲基化和H3K27me3介導的。而SET1A/B的敲低顯著降低DNMT1的表達,使得MLL2靶基因處的DNA甲基化和H3K27me3消失,恢復了這些基因的表達。
更重要的是,研究者發現H3K4me3,H3K27me3和DNA甲基化間的調控在胚胎分化過程中具有重要作用。使用DNA甲基化酶抑制劑5dAza(癌症治療的臨床用藥)可解除MLL2缺失對基因表達的抑制,這提示5dAza有望用於MLL2突變造成的疾病。
總的來說,該研究進一步闡述了MLL2介導的H3K4me3的功能,揭示了H3K4me3,H3K27me3和DNA甲基化共同調控基因表達的機制。對MLL2的靶基因,MLL2介導的H3K4me3並不直接激活它們的表達,而是通過拮抗DNA甲基化和H3K27me3,解除這兩種修飾對這些基因的抑制。值得注意的是,當抑制H3K27me3和DNA甲基化酶時,這些基因在缺乏H3K4me3的條件下依然可以表達,但其中的機制尚待進一步研究。
原文連結:
https://doi.org/10.1038/s41588-020-0618-1
1. Miller, T., N. J. Krogan, et al. (2001). "COMPASS: a complex of proteins associated with a trithorax-related SET domain protein." Proc Natl Acad Sci U S A 98(23): 12902-12907.2. Poepsel, S., V. Kasinath, et al. (2018). "Cryo-EM structures of PRC2 simultaneously engaged with two functionally distinct nucleosomes." Nat Struct Mol Biol 25(2): 154-162.3. Mohan, M. et al. Te COMPASS family of H3K4 methylases in Drosophila.Mol. Cell. Biol. 31, 4310–4318 (2011)4. Wu, M. et al. Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol. Cell. Biol. 28, 7337–7344 (2008).5. Clouaire, T. et al. Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev. 26, 1714–1728 (2012).6. Morgan, M. A. & Shilatifard, A. Chromatin signatures of cancer. Genes Dev. 29, 238–249 (2015).7. Hu, D. et al. Te MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol. Cell. Biol. 33,4745–4754 (2013)8. Herz, H. M. et al. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev. 26, 2604–2620 (2012).9. Hu, D. et al. Not all H3K4 methylations are created equal: Mll2/COMPASS dependency in primordial germ cell specifcation. Mol. Cell 65, 460–475.e6 (2017)10. Rickels, R. et al. An evolutionary conserved epigenetic mark of Polycomb response elements implemented by Trx/MLL/COMPASS. Mol. Cell 63,318–328 (2016)11. Meyer, E. et al. Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nat. Genet. 49, 223–237 (2017).12. Zech, M. et al. Haploinsufciency of KMT2B, encoding the lysine-specifc histone methyltransferase 2B, results in early-onset generalized dystonia. Am.J. Hum. Genet. 99, 1377–1387 (2016)13. Margaritis, T. et al. Two distinct repressive mechanisms for histone 3 lysine 4 methylation through promoting 3'-end antisense transcription. PLoS Genet. 8, e1002952 (2012).14. Clouaire, T., Webb, S. & Bird, A. Cfp1 is required for gene expressiondependent H3K4 trimethylation and H3K9 acetylation in embryonic stem cells. Genome Biol. 15, 451 (2014)15. Tate, C. M., Lee, J. H. & Skalnik, D. G. CXXC fnger protein 1 restricts the Setd1A histone H3K4 methyltransferase complex to euchromatin. FEBS J. 277, 210–223 (2010).16. Carlone, D. L. et al. Reduced genomic cytosine methylation and defective cellular diferentiation in embryonic stem cells lacking CpG binding protein. Mol. Cell. Biol. 25, 4881–4891 (2005).