細說「一次函數的圖象、表達式、性質」

2020-12-12 佳妹說教育

一次函數的圖象、表達式、性質 |

一次函數專項練習

一次函數一直是初中階段數學學習的一個重要內容,只要學好了一次函數,也可以為以後學習其他函數打下堅實的基礎.其中一次函數的應用也一直是中考數學重要題型之一。

這個專項練習從「數」與「形」兩個方面歸納總結一次函數所學知識並有相匹配的知識點和相關的練習。

現在,開啟一次函數專項練習大門,向一次函數基礎知識鞏固之「一次函數的表達式、圖象、性質」前進.

1、知識要點總結

函數定義

一般地,如果在一個變化過程中有兩個變量x和y,並且對於任意一個x都有唯一的一個y和它對應,那麼我們稱y是x的函數.(x和y一 一對應)

一次函數的表達式 y=kx+b(k、b為常數,k≠0)地,b=0時,稱y是x的正比例函數.

一次函數的圖象

① 畫函數圖象的一般步驟

列表、描點、連線

② 一次函數的圖象特徵

正比例函數圖象是一條經過原點的直線,因此畫正比例函數的圖象時,只需再確定一點即可.通常找(1,k)一次函數的圖象是一條直線,因此畫一次函數的圖象時,只需確定兩點即可.通常找(0,b)(-b/k,0)

一次函數的性質

判斷經過哪幾個象限

先利用k的正負確定過哪兩個象限,再通過b的正負,通過上下平移確定一次函數經過哪幾個象限.(正比例函數由於過原點,故只經過兩個象限,要麼第一、三象限,要麼第二、四象限.)

②增減性

當k>0時,y的值隨著x值的增大而增大;

當k<0時,y的值隨著x值的增大而減小.

③k、b的幾何意義

k表示一次函數的傾斜程度;

b是一次函數圖象與y軸交點的縱坐標;

若兩個一次函數的圖象互相平行,則這兩個一次函數的k值相等.

2、需要掌握要點

已知函數圖象,能夠迅速判斷出k、b的正負.

已知k、b的正負,能夠迅速判斷出函數圖象經過哪些象限.

一次函數與存在性的問題

函數的好壞決定了孩子的成績的高低,好多壓軸題都是二次函數的,而學好二次函數的前提就是在一次函數時,打好基礎。才能順利進行初中甚至高中的學習。一次函數的每個知識點都要仔細的講解,才能從各個方面學習函數,打好以後學習函數的基礎,一次函數的函數信息問題,一次函數的等腰三角形的存在性問題,一次函數與直角三角形存在性問題,一次函數與平行四邊形,一次函數與面積多解等,函數在中考中還會從各個方面進行考察,還需要做好全面的準備。

相關焦點

  • 難點解析丨反比例函數的圖象和性質
    函數的相關知識作為每年各省市中考的熱門考點問題,主要考察學生能否結合具體實際情境了解函數的相關的意義,能否正確畫出相關函數的圖象並理解相關函數的性質其中反比例函數的考查形式主要是聯繫一次函數、二次函數以及方程不等式進行綜合考察,而反比例函數的幾何意義也需要引起足夠的重視本文主要講解反比例函數的概念、圖象性質等知識,其他未涉及內容在動態教輔中都做了詳細描述,
  • 對數函數的圖象與性質
    昨天給大家寫了對數的概念,新課引入,今天給大家寫對數函數的圖象與性質的新課引入。
  • 11、函數的圖象
    解題心得作函數圖象的一般方法:(1)直接法.當函數表達式(或變形後的表達式)是熟悉的基本初等函數時,就可根據這些函數的特徵直接作出.(2)圖象交換法.變換包括:平移變換、伸縮變換、對稱變換、翻折變換.(3)描點法.當上面兩種方法都失效時,則可採用描點法.為了通過描少量點,就能得到比較準確的圖象,常常需要結合函數的單調性、奇偶性等性質作出.
  • 初中數學之6.4確定一次函數表達式
    2.通過一次函數中兩個待定字母係數,使同學們認識到確定一次函數表達式必須了解兩個獨立條件,從而學會確定一次函數表達式的方法。【學習重難點】重點: 了解兩個條件確定一個一次函數難點: 能由兩個條件求出一次函數的表達式【學前準備】1.正比例函數的表達式是 ;一次函數的表達式是 .
  • 2021年初中八年級數學公式:一次函數的圖象與性質
    中考網整理了關於2021年初中八年級數學公式:一次函數的圖象與性質,希望對同學們有所幫助,僅供參考。   一次函數的圖象與性質   一次函數是直線,圖象經過三象限;   正比例函數更簡單,經過原點一直線;   兩個係數k與b,作用之大莫小看,   k是斜率定夾角,b與y軸來相見,   k為正來右上斜,x增減y增減;   k為負來左下展,變化規律正相反;
  • 《反比例函數圖象和性質》說課稿
    一、說教材《反比例函數的圖象和性質》是北師大版九年級上冊第六章的內容,本節課的學生是在學生已經學習了一次函數的圖象與性質等知識的基礎上進行教學的,反比例函數的圖象與性質也是對一次函數圖象與性質的複習和對比。為後期學習實際問題中的反比例函數以及二次函數奠定了知識基礎。
  • 4.2.2指數函數的圖象與性質
    結合指數函數的教學,體會「概念-圖象-性質」的研究具體函數的一般思路;結合由函數圖象直觀認識函數性質的過程,體會數形結合的思想方法,提升直觀想像素養.本節課叢文麗老師在指數函數性質教學中,培養學生積累通過函數圖象進行抽象概括性質的經驗,再經歷由性質進一步認識圖象的理性思維;本節課的數學思想方法主要包括函數與方程思想、數形結合思想、特殊到一般的思想和分類與整合的思想。
  • 中考數學一次函數專題複習綱要
    五類基礎考點包括:(1)根據已知條件確定一次函數表達式;(2)會畫一次函數的圖象,根據一次函數的圖象和表達式理解其性質;(3)理解正比例函數;(4)能根據一次函數的圖象求二元一次方程組的近似解;1.2 一次函數的圖象特徵及性質:一次函數圖象特徵主要把握以下幾點:(1) 在平面直角坐標系中,一次函數圖象是一條直線;(2) 係數k怎樣決定圖象的增減性;(3) k、b共同決定圖象經過平面直角坐標系象限的規律
  • 動書解析丨指數函數的概念、圖象及性質
    畫與指數函數有關的圖象的策略(1)找特殊點,選取圖象上的幾個特殊點,描點、連線、畫圖.指數函數的圖象過定點(0,1),所以畫與指數函數有關的圖象,一般會先選取函數圖象所過的定點;(2)圖象變換;(3)利用函數的性質:單調性、奇偶性等.
  • 《正弦函數y=sinx的圖象與性質》簡評(下)
    授課教師的教學是先從正弦函數y=sinx的圖象中去觀察性質,再利用函數解析式也就是利用正弦函數的誘導公式去證明所發現的性質.如圖:教師將學生小組討論之後所發現的函數性質板書在黑板上,並引導學生用正弦函數y=sinx的誘導公式進行證明. 首先,(2)(5)(6)三條性質的邏輯順序是混亂的.
  • 2018中考數學一次、二次函數性質必考總結...初中複習不容錯過!
    即:y=kx (k為常數,k≠0)二、一次函數的性質:1.y的變化值與對應的x的變化值成正比例,比值為k即:y=kx+b (k為任意不為零的實數 b取任何實數)2.當x=0時,b為函數在y軸上的截距。三、一次函數的圖像及性質:1.作法與圖形:通過如下3個步驟(1)列表;(2)描點;(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,並連成直線即可。
  • 課時14 二次函數的圖象及性質
    答案: C2. (2020成都)關於二次函數y=x2+2x-8,下列說法正確的是(  )A. 圖象的對稱軸在y軸的右側B. 圖象與y軸的交點坐標為(0,8)C.12. (2020無錫)請寫出一個函數表達式,使其圖象的對稱軸為y軸:________.
  • 對反比例函數圖象性質的深入解讀
    對反比例函數圖象性質的深入解讀教材呈現人教版數學九年級上冊第五章《反比例函數》第2節,反比例函數的圖象與性質中,教材列舉了三個反比例函數y=2/x,y=4/x,y=6/x,要求觀察它們的圖象,發現它們的共同特徵(教材第150頁),同時為了引導學生思考,提出了三個問題
  • 《二次函數y=ax2+bx+c的圖象與性質》說課稿
    《二次函數y=ax2+bx+c的圖象與性質》說課稿尊敬的各位考官大家好,我是今天的X號考生,今天我說課的題目是《二次函數y=ax2+bx+c的圖象與性質》。《二次函數y=ax2+bx+c的圖象與性質》是在學生已經學習了一次函數、反比例函數的圖象與性質以及會建立二次函數模型和理解二次函數的有關概念的基礎上進行的,它既是前面所學知識的應用、拓展,是對前面所學一次函數、反比例函數圖象與性質的一次升華,也是高中階段數學學習的基礎知識,它在教材中起著非常重要的作用。
  • 一次函數的定義、性質及圖像知識梳理~
    一次函數作為函數的入門知識,在初中數學知識體系中佔有一定的比重,也是各省市每年中考的必考內容,掌握一次函數的概念、性質及圖象的相關特徵是解決一次函數的相關題目必要途徑,而中考中常見的題型包括:題型一:一次函數的解析式的求法;題型二:探究一次函數圖象的平移、對稱及旋轉變換問題;題型三
  • 九年級(上)二次函數圖象和性質——精選學習筆記
    二次函數是九年級學習內容的重點和難點,中考必考知識,形式多樣,分值佔比重較高。今天主要學習二次函數的定義及其圖象的演變過程,從簡單到複雜,循序漸進,內容遞增式拓展,學習起來較易接受。1,二次函數的定義,及相關係數的分解。
  • 知識掃盲丨對數函數圖象及其性質
    的圖象和性質如下表:)上為增函數,函數圖象上升;)上為減函數,函數圖象下降.(3)底數決定函數圖象相對位置的高低:①上下比較:在直線的圖象如圖,
  • 關於描點法作反比例函數圖象的教學思考
    描點法作反比例函數的圖象是描點法作一次函數圖象(圖象是直線)的延續,是進一步完善函數知識性認識和構建函數研究方法的深化。本節課的課堂教學要義貴在形成以「理解反比例函數的圖象是雙曲線」為知識目標,以「掌握描點法作圖的方法」為能力目標,以「遷移描點法作其它函數圖象」為素養目標。唯有如此,我們的教學才是向深度學習邁進。
  • 初中數學知識點總結:一次函數
    初三學習的知識是初中三年學習的匯總,為了方便大家更好地複習,中國教育在線整理了初三數學關於一次函數的知識點,希望對大家的學習有所幫助。  一、知識網絡  二、中考要求  1.經歷函數、一次函數等概念的抽象概括過程,體會函數及變量思想,進一步發展抽象思維能力;經歷一次函  數的圖象及其性質的探索過程,在合作與交流活動中發展合作意識和能力.
  • 【初中數學 第19期】中考試題研究:反比例函數性質及應用
    通常考察反比例函數的圖象與性質;反比例函數圖象上點的坐標特徵;反比例函數圖象與幾何圖形結合,一.k的幾何意義,二.與圖形有關的問題;三、反比例函數與一次函數綜合題。【點評】本題主要考查反比例函數的圖象與性質,及反比例函數圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.