固態電解質可使電池徹底告別安全隱患啦!

2020-12-05 OFweek維科網

   據外媒報導,日前三星和麻省理工學院的研究人員發現,有一種新的電池組件材料能夠為電池提供幾乎無限量的存儲容量。這種固態電解質可以延長電池的使用時間,增加電池容量,並且讓電池徹底告別安全隱患。目前,常見的鋰離子電池使用的是液體電解質,這是一種有機溶劑,容易引發過熱、起火等問題。

  麻省理工學院材料科學和工程教授格布蘭德˙塞德稱,使用固態電解質的電池幾乎不會退化,這也意味著電池能使用「數十萬個周期」。相比之下,有機電解液的電化學穩定性有限,會隨時間推移而喪失產生電荷的能力。

  研究人員認為,固態電解質是對當前鋰電池的改進。固態電解質以往存在的問題是,它們傳輸離子的速度不夠快,不足以產生足夠的電能。而研究人員正致力於解決這一問題。此外,固態鋰離子電池還可以在非常低的溫度下正常使用。

相關焦點

  • 崔屹團隊:聚合物固態電解質不安全?防火、超輕聚合物固態電解質來了
    基於液態電解質的鋰離子電池由於有機溶劑電解質自身存在安全性隱患,促使了人們加快對固態電解質、離子液體、聚合物及其組合進行研究。開發與液體電解質電池相當的能量密度、高離子導電性、超薄、輕質固體電解質成為研究的目標。   電化學鍍鋰、剝離過程中容易形成的鋰枝晶容易刺穿隔膜,導致電池短路,最終引發火 災和悲劇。
  • 【高比能鋰離子電池專刊*崔光磊】PEO/LITFSI固態電解質的離子傳輸與壓力構效關係
    眾所周知,高能量密度的深海動力電池是水下裝備的關鍵部件之一,其性能將直接影響水下裝備的技術水平和可靠性等。但是,目前國內使用的銀鋅電池能量密度較低,難以突破深海動力電池長續航的瓶頸。相比之下,鋰離子電池(LIBs)具有高能量密度、長循環壽命等特點,且被廣泛應用於可攜式電子產品、電動汽車等商業化設備,優勢明顯。
  • 可列印的高性能固態電解質薄膜,用於下一代電池
    doi/10.1126/sciadv.abc8641 鋰離子(鋰離子)電池廣泛應用於可攜式電子設備、電動汽車和電網級儲能系統。然而,由於傳統的有機電解質在許多情況下引起火災和爆炸,鋰離子電池的安全性在過去幾年中屢屢受到質疑。陶瓷固態電解質 (SSE) 薄膜有望通過阻斷導致短路和熱失控的鋰樹突,同時為下一代鋰離子電池提供高能量密度,解決安全問題的可行解決方案。
  • 打破鋰電池固態電解質的瓶頸 中國科大提出原子級解決方案
    安徽網 大皖客戶端訊 當前主流鋰電池使用液態電解質,這存在起火等安全隱患,且特定體積內能夠儲存的能量有限。但能解決這些問題的下一代固態鋰電池仍存在很多尚未攻克的難題。8月21日,頂級學術期刊《Matter》刊登中國科學技術大學的馬騁教授和他的合作者最新成果,他們提出來一種新策略,可以有效解決下一代固態鋰電池中電極材料和固態電解質接觸差這一關鍵問題,合成出的固態複合物電極展現出優異的容量和倍率性能。用固態電解質替換傳統鋰離子電池中的有機液態電解質可以極大緩解安全問題,且有望突破能量密度的「玻璃天花板」。
  • 基於硫化物電解質的鋰/硫化物全固態電池
    相較於傳統電解液的鋰離子電池,基於固態電解質的全固態鋰電池未來將具有更高的安全性和能量密度,可以預見,發展全固態鋰電池有望突破傳統液態電解質鋰離子電池的瓶頸,具有重要的現實意義。在早期研究中,由於固態電解質離子電導率較低,全固態鋰電池在與有機電解液鋰離子電池的競爭中並不具備優勢。但近年來,科研人員在固態電解質電導率方面取得了突破,尤其以LGPS為代表的一系列硫化物固態電解質的離子電導率已經達到甚至超過傳統液態電解質。
  • 新型鋰離子超導體可實現安全,高性能的全固態電池
    然而,由於最近已經多次提出電池安全性問題,因此對於使用可燃液體電解質的現有電池的使用的各種關注已經增加。為了解決該安全問題,近來,全固態電池技術引起了極大的關注,在該技術中,所有電池組件都被固態材料所替代。Kim博士在KIST的研究團隊開發了一種具有超離子傳導性的固體電解質,該電解質使用了一種基於硫化物的結晶結構,稱為銀輝石。
  • 高離子電導率硫化物固態電解質的空氣穩定性研究進展
    與液態電解質相比, 固態電解質不揮發、不燃燒, 能夠在更寬的溫度範圍內運行, 提高了電池的安全性和耐用性. 此外, 採用固態電解質組裝的電池省去了隔膜和液體等非活性物質, 降低了電池的重量和體積, 簡化了電池設計並通過電池疊片實現了電池組更高的能量密度. 固態電解質主要包括聚合物電解質, 氧化物電解質和硫化物電解質.
  • 固態電池什麼時候可以商用_全固態電池電極材料
    LiCoO2、LiFePO4、LiMn2O4等氧化物正極在全固態電池中應用較為普遍。   當電解質為硫化物時,由於化學勢相差較大,氧化物正極對Li+的吸引大大強於硫化物電解質,造成Li+大量移向正極,界面電解質處貧鋰。
  • 電池電解液和電解質的區別_電池電解液和電解質的兩種形態
    電池電解液和電解質的區別   電解質和電解液不是一樣的,電解液包含電解質,因為電解質是固態,一般是指離子狀態的物質,電解液溶解在液態溶劑中形成了電解液,是指能導電的一種液體,會因為使用環境不同、物質配方會不同,但是功能是一樣的,就是具有導電的功能。
  • 關於全固態鋰離子電池的淺析
    全固態鋰離子電池的結構包括正極、電解質、負極,全部由固態材料組成,與傳統電解液鋰離子電池相比具有的優勢有:①完全消除了電解液腐蝕和洩露的安全隱患,熱穩定性更高;②不必封裝液體,支持串行疊加排列和雙極結構,提高生產效率;③由於固體電解質的固態特性,可以疊加多個電極;④電化學穩定窗口寬(可達5V以上),可以匹配高電壓電極材料
  • 固態電池到底是什麼
    雖然三元鋰電池能量密度高,但是電池安全隱患大。天風證券在今年9月的研報中提到,鋰電池快充帶來的安全隱患,包括熱效應和析晶。熱效應:大電流充電,內阻的增大會導致焦耳發熱效應加劇帶來副反應,如電解液的反應分解、產氣等一系列問題。析晶:造成電池短路的危險。
  • 鋰電池宿命:繞不過的固態電池
    但是隨著鋰離子電池用到了電動汽車上,人們開始對它挑剔起來,能量密度能不能再提高?壽命能不能更長?尤其是:能不能更安全?於是,人們想起了當初的固態鋰金屬電池,並將它作為最有可能接替鋰離子電池的下一代電池技術。在鋰電池的發展道路上,液態鋰離子電池和固態鋰金屬電池,可以說是同根而生,各自發展。
  • 進展|全固態鋰電池關鍵固態電解質材料與金屬鋰負極的熱穩定性研究
    然而,金屬鋰與液態電解質會發生反應,且會隨著電池循環產生鋰枝晶,造成電池較低的循環壽命和較差的安全性,這嚴重阻礙了金屬鋰電池的大規模應用。全固態電池將液態電解質替換成了不可燃的具有一定剛性的固態電解質,且一些固態電解質表現出對金屬鋰良好的兼容性,因而全固態電池被認為有望同時實現高能量密度和高安全性。然而,目前針對全固態電池安全性的研究工作相對較少,對全固態電池的安全性的認識也不夠深入。
  • 固態電池離我們還有多遠?
    傳統液態鋰電池不會是動力電池的技術終點、固態電池是後鋰電時代的必經之路早已是行業共識。我們所期待的動力電池技術革命,似乎馬上就要來了。不過,最「靠譜的」固態電池,但它依舊充滿了技術挑戰。之所以今天會選擇這樣的一個話題,也是因網友們的一句話,現在新能源車型採用動力電池為何始終徹底解決不了安全性以及電池老化、壽命短等問題。
  • 固態電池:搶佔下一代動力電池技術制高點
    固態電池就是使用固體電極和固體電解質的鋰二次電池電池,具有不可燃、不腐蝕、不揮發、不漏液等優勢,安全性能大大提升。另外,固態電池使用金屬鋰做負極,可匹配高電壓正極材料,進一步提升能量密度,用以滿足電動汽車的續航裡程要求。
  • 天賜材料:目前已開展全固態電池用固態電解質的研究 且已有專利布局
    【天賜材料:目前已開展全固態電池用固態電解質的研究
  • 日本開發出耐寒全固態電池用電解質
    日本靜岡大學講師守谷誠與東京工業大學教授一杉太郎等人組成的研究小組,開發出了可用作「全固態電池」電解質的有機分子結晶。全固態電池是被期待應用於純電動汽車(EV)等的新一代蓄電池。研究小組開發的分子結晶的特點是,與以往的技術相比,容易在低溫下發揮作用。
  • 固態電池是無鈷電池?固態電池與鈷的關係解析
    進入2021年,蔚來汽車主打固態電池,而松下則有意開發無鈷電池。那麼,固態電池與無鈷電池是什麼關係?固態電池是無鈷電池嗎?早期固態電池的電解質是聚合物電解質,以PEO(聚環氧乙烷)佔絕大多數,PEO的電化學穩定窗口(氧化電位)是3.8V,無法與高電壓正極材料(鈷酸鋰、三元材料等)相容,只能用磷酸鐵鋰做正極,所以不用鈷的說法就流傳下來。不過早期的固態電池有一個缺點,那就是能量密度並不高。
  • ...儲能|負極|固態電池|全固態電池|高禾投資研究中心|正極材料|鋰...
    定義固態電池是指採用固態電解質的鋰離子電池。與傳統鋰電池相比,全固態電池最突出的優點是安全性。固態電池具有不可燃、耐高溫、無腐蝕、不揮發的特性,固態電解質是固態電池的核心,電解質材料很大程度上決定了固態鋰電池的各項性能參數,如功率密度、循環穩定性、安全性能、高低溫性能以及使用壽命。
  • 全固態鋰金屬電池近期研究成果及國內電池供應商布局
    鋰金屬電池是下一代最具前景的高能量密度存儲設備之一。然而,鋰金屬在循環過程中產生的枝晶可刺破隔膜,引起電池短路甚至爆炸。採用固態電解質代替易燃的液態電解質可從根本上解除鋰金屬電池的安全隱患。固態鋰電池是一類使用固體電極材料和固體電解質材料的鋰電池。與液態鋰電池,混合固液鋰電池不同,固態鋰電池的電池單體中不含有任何液體電解質、液態溶劑及液態添加劑。