高中數學,三角恆等變形弦化切,這麼使用公式,高分唾手可得

2021-01-15 孫老師數學

在三角恆等變形這一章,利用同角三角函數公式,把含有正弦及餘弦的代數式化為正切是一個基本的技能,這也是三角化簡計算的基礎之一,掌握這個基礎技能將大大有利於解決難度較高的三角綜合題。

第1題第①問分析:給出了tanα的值,來求一個含有正弦餘弦的代數式,明顯需要把正餘弦化為正切,下面要講的是弦化切最常見的方法,分母是弦的2次式,只需要把分子1寫成sinα+cosα,這樣分子分母都是關於弦的2次式子,然後分子分母同時除以cosα,就可以把所有的弦化為正切,實際上,只要分子分母中的每一項的弦(正弦或餘弦)的次數都相同,就可以使用這種方法把弦化為正切,其它題使用的也是同樣的思維,不再一一講解,本題詳細過程如下:

第②問分析:可以把這個式子看成分母等於1的「分數」,然後把分子和分母中的1都換成sinα+cosα,這樣分子分母中的每一項都是弦的2次式子,然後分子分母同除以cosα即可,過程如下:

第③問分析:先把代數式書寫成分母為1的分式形式,同時把1改寫為sinα+cosα,然後分子分母同時除以cosα,如下圖,之後分子中還含有弦:sinαcosα,只需要使用同樣的方法把sinαcosα化為正切即可,詳細過程如下:

第2題分析:如果基礎好的學生,看到已知中的等式,就會想到經過化簡可以求出tanα的值:

求出了tanα的值,然後進行弦化切即可:

初中、高中、基礎、提高、中考、高考;關注孫老師數學,你想要的,這裡都有!禁止轉載!

相關焦點

  • 高中數學,三角恆等變形證明題,熟記公式特點,加倍解題速度
    在三角恆等變形這一章中,眾多的公式及其變形公式,都需要熟記於心,只有這樣才能在做題中,特別是在面對綜合證明題時,做到遊刃有餘;除了公式及其變形公式,還要對一些基本題型和解題思維有深入的了解,例如,切化弦、弦化切、使用餘弦二倍角公式消去常數1、使用同角三角函數之間的關係消去常數1、同角正弦和餘弦的和與他們的積之間的關係
  • 高中數學公式大全:三角恆等變化與解三角形
    高中數學公式大全:三角恆等變化與解三角形 2019-02-15 15:36 來源:新東方網編輯整理 作者:
  • 3、和差角公式與簡單三角恆等變換——高中數學笑著學系列(必修四)
    學好數學一定要遵循規律,從記憶知識到掌握方法再到鍛鍊能力,需要循序漸進;本系列,我將按照人教版教材順序
  • 三角恆等變換、角度範圍確定,高中數學三角函數求值問題的關鍵點
    2) 同角三角函數基本關係式、誘導公式以及和角、差角、半角、倍角、輔助角的有關公式。3) 三角函數圖像、圖像變換及其性質。4) 三角恆等變換問題的求解一般方法與技巧。1.1) 已知角度值,求其三角函數值(知角求值)一般利用三角函數誘導公式、三角恆等式等,通過三角恆等變換,先化簡等式,再求解。
  • 系統化,輕快學習高中數學三角函數之三角恆等變換有關必備知識
    ② 此三角恆等式的證明方法有多種,其中向量法最便捷——即令單位向量a(cosα,sinα)以及單位向量b(cosβ,sinβ),再由數量積公式即可方便地求證。輔助角公式4. 三角恆等變換三角恆等變換,即利用同角三角函數基本關係式、誘導公式、兩角和與差公式、倍角(半角)公式等進行等價代換,以化簡式子、方便運算。
  • 三角恆等變換方法、技巧與結論,助你攻克高中數學三角函數問題
    但是,三角函數的多數問題,如求值問題、求角問題、參數問題等,一般都需要先進行三角恆等變換,也即三角恆等變換作為一個中間問題廣泛存在於各種三角函數題型中,以達成簡化式子、方便計算或變形/變換的目標。換句話說,三角恆等變換是求解很多三角函數有關題目的關鍵一環。
  • 高中數學三角恆等變換
    一、公式:和角公式、差角公式、倍角公式、降冪公式、輔助角公式、萬能公式、積化和差公式、和差化積公式。二、常見的拆角技巧。三、常數代換:用某些三角函數值代替某些常數,使之代換後能運用相關的公式。四、例題分析:1、給角求值*1三角恆等變換的關鍵是找到角與角之間的聯繫,什麼情況下角度有關係呢?
  • 三角函數恆等變換及倍角公式和半角公式
    上篇文章中,我以下面四個三角恆等變換公式為基礎,推導出了一般形式的積化和差、和差化積公式。1.正切函數恆等變換根據任意角的三角函數的定義,我們能夠得到正切函數與正餘弦函數的關係那麼我們根據正餘弦函數的三角恆等變換,可以推出相應的正切函數的恆等變換將上述等式中β替換成-β就得到正切函數兩角差的恆等變換公式上述一系列等式為一般情況下兩角和差的變換,之後我們再根據上述等式來分析一些特殊的情況,看能否得到其他有用的結論。
  • 高中三角函數萬能公式 高中數學特殊公式
    高中三角函數萬能公式 高中數學特殊公式三角及其御用函數無疑是高中數學舉足輕重的戲份之一,對於一個至少盤踞著兩本必修而且還攜帶著為數眾多公式招搖過市的傢伙,這難道不足以引起重視嗎?下文有途網小編給大家整理了《高中三角函數萬能公式 高中數學特殊公式》,僅供參考!
  • 高中數學三角函數萬能公式
    高中數學三角函數萬能公式三角及其御用函數無疑是高中數學舉足輕重的戲份之一,對於一個至少盤踞著兩本必修而且還攜帶著為數眾多公式招搖過市的傢伙,這難道不足以引起重視嗎?下文有途網小編給大家整理了《高中數學三角函數萬能公式》,僅供參考!
  • 高中數學知識點總結及公式大全
    數學學習困難的研究是數學教學與實踐中一個引人注目的問題,今天分享高中數學知識點總結及公式,希望可以幫助大家!集合、基本初等函數Ⅰ、函數應用空間幾何體;點、直線和平面的位置關係空間向量與立體幾何;直線與方程圓與方程;圓錐曲線與方程統計;概率;離散型隨機變量的分布列三角函數;三角函數的圖象與性質
  • 高中數學三角函數公式總結,想要拿高分,先把這些公式背下來!
    三角函數作為六大初等函數之一,是高中數學的難點。三角恆等變化多,考查題型更靈活。需要學生完全掌握三角和公式。說起來容易,做起來難。三角和公式太多,死記硬背根本行不通。只能通過推導進行理解記憶,找到公式之間的關聯,摸清規律。而且這一部分是高中數學常考考點,選擇題、填空題、計算題都出現過,甚至在一些立體幾何、不等式中也出現。總之,高中數學想要得高分,三角函數公式是必須要背誦的。
  • 高中數學公式匯總
    高中數學公式匯總 10.三角函數的圖形與性質 11.三角恆等變化與解三角形
  • 高中數學公式大全:反三角函數公式
    高中數學公式大全:反三角函數公式 2013-01-11 15:54 來源:新東方網整理 作者:
  • 22、簡單的三角恆等變換
    3.化簡、求值的主要技巧:(1)尋求角與角之間的關係,化非特殊角為特殊角;(2)正確靈活地運用公式,通過三角變換消去或約去一些非特殊角的三角函數值.三角函數式的求值思考解決「給值求值」問題的關鍵是什麼?「給角求值」問題與「給值求值」問題有什麼聯繫?
  • 高中數學三角函數公式大全(重要知識點梳理)
    高中數學三角函數公式大全(重要知識點梳理)教學目標1、了解任意角三角函數的概念,弧度制與角度制互化。2、能推導三角函數誘導公式、 能畫出三角函數圖像、理解其性質,並進行平移變換。3、掌握兩角和的正弦、餘弦、公式,及其二倍角、半角公式,掌握並運用正弦定理、餘弦定理解決問題。
  • 一元二次方程太貴了,初中高中數學公式大全
    主要用知識點展示初中和高中階段數學公式及運算法則的匯總:內容涉及:冪指數,對數恆等式,對數運算,對數換底公式和運算法則。二次函數公式和判別式,斜率公式,點到線公式,平行線間距離公式,到角,夾角公式。圓與直線的位置關係判定,橢圓公式及判定。雙曲線公式和拋物線公式。直線與圓,線性關係,數列判定公式。三角函數,中點坐標公式。線與線垂直的判定,直線與面的關係。
  • 2020高中數學必備公式大全,吃透它們,數學再「撿」20分
    無論你是理科生還是文科生,數學公式,你必須掌握。小編提醒廣大考生,基礎知識在高考中佔到80%。數學公式就是基礎知識的重中之重。數學公式怎麼記呢,小編給大家支支招。公式巧記小貼士做數學題時,把用到的公式、基礎知識寫在題目旁邊,題做了,基礎知識也重新鞏固了!既做到了保持對題目的敏感,也讓基礎知識在你的腦子中更清晰哦。要注意公式的順用、逆用、推導與變形。
  • 三角形面積公式大全
    今天聊一個有趣的話題,三角形的面積公式到底有多少種?三角形的面積用最簡單的求法就是在小學學習的底×高÷2,而這個公式人類還是經歷了比較長的過程才推導出來的。一開始是求得矩形的面積,後來用割補法求得銳角三角形的面積,至於鈍角三角形的面積,還是費了一番周折的。現在我們來看看三角形面積公式有多少種?
  • 三角恆等變換解題技巧
    三角恆等變換解題技巧(更多資料和更詳細的例題解答和解題技巧,請關注+評論!如果對大家有幫助,歡迎轉發幫助更多學子!!!)三角恆等變換是高考的一個重要考點,通常來說難度不大。三角恆等變換的考查主要集中在兩角和與差的正弦、餘弦和正切公式(包括二倍角公式)以及輔助角公式。下面小編和大家分享一下三角恆等變換的解題技巧。