3、和差角公式與簡單三角恆等變換——高中數學笑著學系列(必修四)

2021-01-14 數學是鋼老師教的

學好數學一定要遵循規律,從記憶知識到掌握方法再到鍛鍊能力,需要循序漸進;本系列,我將按照人教版教材順序,依次介紹每節所講知識重點,結合課本習題和高考真題,幫助大家掌握高中數學知識,希望能夠給高中學生帶來一點點幫助。


1、兩角差公式的推導

  利用向量的坐標形式以及數量積公式進行推導,是記憶的關鍵;

2、其他和差角公式的推導

  熟練應用誘導公式,進行適當轉化;

3、二倍角公式的推導

  兩角相同是為二倍角;

4、簡單三角恆等變換

  不簡單,技巧性強,核心在於公式的變換;

5、關鍵點

  角的相互關係,是公式使用的關鍵點,要善於發現。


1、完成教材配套練習;

2、公式記憶過關,正反推導;

3、嘗試解決高考對應題目;

4、本節知識技巧性過強,資料習題可能會適得其反,希望先把握課本例題、練習題,熟練公式才是王道。


相關焦點

  • 三角函數恆等變換及倍角公式和半角公式
    上篇文章中,我以下面四個三角恆等變換公式為基礎,推導出了一般形式的積化和差、和差化積公式。1.正切函數恆等變換根據任意角的三角函數的定義,我們能夠得到正切函數與正餘弦函數的關係那麼我們根據正餘弦函數的三角恆等變換,可以推出相應的正切函數的恆等變換將上述等式中β替換成-β就得到正切函數兩角差的恆等變換公式上述一系列等式為一般情況下兩角和差的變換,之後我們再根據上述等式來分析一些特殊的情況,看能否得到其他有用的結論。
  • 三角恆等變換方法、技巧與結論,助你攻克高中數學三角函數問題
    必備基礎(要點)1) 任意角、弧度制、任意角三角函數定義;2) 同角三角函數基本關係式、誘導公式以及和角、差角、半角、倍角、輔助角的有關公式;3) 三角函數圖像、圖像變換及其性質。1.但是,三角函數的多數問題,如求值問題、求角問題、參數問題等,一般都需要先進行三角恆等變換,也即三角恆等變換作為一個中間問題廣泛存在於各種三角函數題型中,以達成簡化式子、方便計算或變形/變換的目標。換句話說,三角恆等變換是求解很多三角函數有關題目的關鍵一環。
  • 高中數學三角恆等變換
    一、公式:和角公式、差角公式、倍角公式、降冪公式、輔助角公式、萬能公式、積化和差公式、和差化積公式。二、常見的拆角技巧。三、常數代換:用某些三角函數值代替某些常數,使之代換後能運用相關的公式。四、例題分析:1、給角求值*1三角恆等變換的關鍵是找到角與角之間的聯繫,什麼情況下角度有關係呢?
  • 系統化,輕快學習高中數學三角函數之三角恆等變換有關必備知識
    必備基礎1) 任意角、弧度制、任意角三角函數的概念2) 同角三角函數基本關係式與誘導公式3) 三角函數的圖像、性質與圖像變換1.倍角、半角公式1) 2倍角(由兩角和與差公式推出)2) 3倍角(由兩角和與差公式推出) 3) 半角(由cos2α倍角公式逆推即得)
  • 三角恆等變換、角度範圍確定,高中數學三角函數求值問題的關鍵點
    2) 同角三角函數基本關係式、誘導公式以及和角、差角、半角、倍角、輔助角的有關公式。3) 三角函數圖像、圖像變換及其性質。4) 三角恆等變換問題的求解一般方法與技巧。1.除少數比較簡單的題目可直接求解外,多數三角函數求值問題一般可通過上圖的兩大步求解。1) 已知角度值,求其三角函數值(知角求值)一般利用三角函數誘導公式、三角恆等式等,通過三角恆等變換,先化簡等式,再求解。
  • 三角恆等變換解題技巧
    三角恆等變換解題技巧(更多資料和更詳細的例題解答和解題技巧,請關注+評論!如果對大家有幫助,歡迎轉發幫助更多學子!!!)三角恆等變換是高考的一個重要考點,通常來說難度不大。三角恆等變換的考查主要集中在兩角和與差的正弦、餘弦和正切公式(包括二倍角公式)以及輔助角公式。下面小編和大家分享一下三角恆等變換的解題技巧。
  • 22、簡單的三角恆等變換
    3.化簡、求值的主要技巧:(1)尋求角與角之間的關係,化非特殊角為特殊角;(2)正確靈活地運用公式,通過三角變換消去或約去一些非特殊角的三角函數值.三角函數式的求值思考解決「給值求值」問題的關鍵是什麼?「給角求值」問題與「給值求值」問題有什麼聯繫?
  • 三角恆等變換,學會了,三角學習就踏出了最關鍵的一環,期待吧!
    三角恆等變換,顧名思義就是運用三角公式來因勢利導,因地制宜進行等價變換,這期間需要我們對三角公式系統化的學習掌握,我們且看有哪些三角變換公式:第一、和角與差角公式第二、二倍角公式二倍角公式推導過程:第三、半角公式第四、輔助角公式
  • 高中三角函數萬能公式 高中數學特殊公式
    高中三角函數萬能公式 高中數學特殊公式三角及其御用函數無疑是高中數學舉足輕重的戲份之一,對於一個至少盤踞著兩本必修而且還攜帶著為數眾多公式招搖過市的傢伙,這難道不足以引起重視嗎?下文有途網小編給大家整理了《高中三角函數萬能公式 高中數學特殊公式》,僅供參考!
  • 高一數學2020年寒假習題練習之三角函數恆等變換
    2020年寒假作業之三角恆等變換習題練習,看看你能全做出來嗎嗨,大家好,這裡是每天在為大家免費更新各類考點的尖子生數理化教育,這個寒假可能有點長,你不能出去玩耍,還是把大把的時間花在學習上吧,我們會在後續課程給出大家更多的考點哦,希望大家加入咱們一起學習吧。本次課程留給大家的是三角恆等變換相關的習題,看看你能不能全部做出來。
  • 兩角和與差的餘弦公式的五種推導方法之對比(高中數學)
    兩角和與差的餘弦公式的五種推導方法之對比兩角和與差的餘弦公式是三角函數恆等變換的基礎
  • 高中數學三角函數公式大全(重要知識點梳理)
    高中數學三角函數公式大全(重要知識點梳理)教學目標1、了解任意角三角函數的概念,弧度制與角度制互化。2、能推導三角函數誘導公式、 能畫出三角函數圖像、理解其性質,並進行平移變換。3、掌握兩角和的正弦、餘弦、公式,及其二倍角、半角公式,掌握並運用正弦定理、餘弦定理解決問題。
  • 高中數學,三角恆等變形證明題,熟記公式特點,加倍解題速度
    在三角恆等變形這一章中,眾多的公式及其變形公式,都需要熟記於心,只有這樣才能在做題中,特別是在面對綜合證明題時,做到遊刃有餘;除了公式及其變形公式,還要對一些基本題型和解題思維有深入的了解,例如,切化弦、弦化切、使用餘弦二倍角公式消去常數1、使用同角三角函數之間的關係消去常數1、同角正弦和餘弦的和與他們的積之間的關係
  • 高中數學答疑 01三角函數 誘導公式 和 二倍角公式 應用
    不斷有同學問問題,想到同學們的問題可能對其他同學有幫助,所以新建了#高中數學答疑#模塊,今天先上第1題,主要是三角函數誘導公式和二倍角公式應用,希望通過這題可以幫助同學們複習相關的公式和方法.先上題目有興趣的同學可以自己試試看,注意:——三角函數恆等變換問題的一個重要原則是「先角後名」,就是先研究「角」的特點,然後再解題,這題的關鍵是想辦法用前面給的角,把後面的角表示出來。
  • 高中數學必修四:三角函數誘導公式二、三、四
    高中數學必修四:三角函數誘導公式二、三、四知識點一 誘導公式二——四1、 角的對稱(1) π+a的終邊與角a的終邊關於原點對稱;π-a的終邊與角a的終邊關於y軸對稱。(2) -a的終邊與角a的終邊關於x軸對稱;2、 誘導公式二、三、四的推導(1) 誘導公式二在單位圓上,角a的終邊與單位圓交於點P(x,y),角π+a與角a的終邊關於原點對稱,(2) 誘導公式三角a與-a的終邊關於x軸對稱,故在單位圓上,設P(x,y),則P』(x,-y)。
  • 高中數學三角函數題型總結歸納,同角三角函數及誘導公式
    三角函數裡面的公式較多,題型也不少。所以這是高中數學裡既要記憶又要理解的章節。三角函數總共由28個考點需要掌握,分別是:專題一:象限角及終邊相同的角考點1:象限角的表示考點2:已知終邊求角度考點3:半角平分法確定象限專題二:扇形的相關公式
  • 《兩角和與差的三角函數》說課稿
    一、說教材首先談談我對教材的理解,《兩角和與差的三角函數》是北師大版高中數學必修四第三章第二節的內容,主要講授了運用平面向量的數量積推導兩角差的餘弦公式以及兩角和與差的正、餘弦公式的應用。本節課的內容是在熟練掌握了部分特殊角的正弦、餘弦和正切等三角函數值和平面向量知識的基礎上進行教學,既是三角函數和平面向量知識的延伸,又是學習兩角和與差的正切公式、二倍角公式、半角公式等後繼內容的基礎,起著承上啟下的重要作用。二、說學情教學的基本前提是為了學生而進行的教學,其根本目的在於促進學生的主動發展,因此在備課時要充分考慮所面對學生的特點。
  • 必備技能,高中數學三角函數求角度問題的一般方法與技巧
    2) 同角三角函數基本關係式、誘導公式以及和角、差角、半角、倍角、輔助角的有關公式。3) 三角函數圖像、圖像變換及其性質。4) 三角恆等變換問題的求解一般方法與技巧。1.這類問題很多時候要用到正、餘弦定理,而這是解三角形模塊的核心內容(現人教版必修5),所以本文例題不會涉及這兩個定理,而只涉及只需簡單恆等變換即可求解的問題。2. 解決問題的一般解法如圖。除少數簡單的題目可直接求解外,多數三角函數求角問題一般可通過上圖的三大步的思路來思考和解答——即求角問題可先看作求值問題,之後再把角度求出來。
  • 【考點41】兩角和與差的公式的應用
    【考綱解讀】三角恆等變換1.和與差的三角函數公式
  • 高中數學教材上這些知識, 價值130分! 做到三點即可掌握
    同一城市不同學校的學習順序並不一致,這取決於相應高中的教研組的安排。(為給大家提供更精準的學習資料,可在留言區留言你所在學校數學教材的學習順序) 個別學校的順序為13452,那可考慮秋季必修14的課程;個別學校的順序為13245,那可考慮秋季必修1、2的課程。必修3課本簡單。