高中數學:三角函數及解三角形-正弦定理、餘弦定理應用問題複習

2021-01-08 Math實驗室

大家好,歡迎進入Math實驗室— 專注於數學的我是用心的!

技巧總結歸納:

求解距離問題的一般步驟:

(1)畫出示意圖,將實際問題轉化成三角形問題;

(2)明確所求的距離在哪個三角形中,有幾個已知元素;

(3)使用正弦定理、餘弦定理解三角形(對於解答題,應作答).

技巧總結歸納:

解決高度問題的注意事項:

(1)在測量高度時,要準確理解仰角、俯角的概念,仰角和俯角都是在同一鉛垂面內,視線與水平線的夾角.

(2)在實際問題中,可能會遇到空間與平面(地面)同時研究的問題,這時最好畫兩個圖形,一個空間圖形,一個平面圖形,這樣處理起來既清楚又不容易搞錯.

(3)注意山或塔垂直於地面或海平面,把空間問題轉化為平面問題.

技巧總結歸納:

解決測量角度問題的注意事項:

(1)應明確方位角或方向角的含義.

(2)分析題意,分清已知與所求,再根據題意畫出正確的示意圖,這是最關鍵、最重要的一步.

(3)將實際問題轉化為解三角形的問題後,注意正弦、餘弦定理的「聯袂」使用.

本文由Math實驗室原創文章,因圖片上傳格式問題,可能造成圖片模糊不清問題,如若需要相關可列印電子版文件可選擇關注哦~也可私聊我留下郵箱哦!也希望本文對你有所幫助~

更多文章:

高考數學:任意角、弧度制及任意角的三角函數複習講義資料PPT

高中數學複習資料正弦定理和餘弦定理知識+例題+練習講解PPT

一圖勝千言,老師說:用思維導圖來學習數學更符合人類的認知規律

相關焦點

  • 在高考數學,掌握正弦定理和餘弦定理,才能拿下解直角三角形
    越是接近高考,我們更要認真對待高考數學複習課,做到精講精練,提高複習效率。如考生可以從典型的基礎問題或課本例題入手,通過一題多解、觸類旁通,或一題多變和舉一反三,進行有效的針對性複習,幫助自己查漏補缺,不斷提高學習成績。
  • 高中數學說課稿:《正弦定理》
    教材地位與作用:本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關係有密切的聯繫與判定三角形的全等也有密切聯繫,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯繫在高考當中也時常考一些解答題。
  • 2019高考數學:解三角形——正弦定理和餘弦定理的解題技巧和模型
    解三角形——正弦定理和餘弦定理的解題技巧和模型正弦定理、餘弦定理的每一個等式中都包含三角形的四個元素(三角形有三個角和三條邊,三角形的邊與角稱為三角形的元素),如果其中三個元素是已知的(至少要有一個元素是邊),那麼這個三角形一定可解.關於斜三角形的解法,根據已知條件及適用的定理,
  • 一般三角形中的正弦定理和餘弦定理
    最初學習的三角函數是在直角三角形中為了表示邊長之間的關係而定義的。後來隨著角度定義的擴展,三角函數的定義範圍也擴充了,將其角度擴展到了任意2角。現在我們利用三角函數作為工具來分析一般的三角形。一般三角形的正弦定理在一般形狀的三角形ABC中的其中一個頂點向對邊作垂線,可形成兩個直角三角形,在這兩個三角形中,根據直角三角形中斜邊與直角邊的關係,可得這就是一般三角形中的正弦定理,它表示了邊和對角之間的比例關係。
  • 乾貨|解三角形之餘弦定理證明
    (2)與正弦定理一樣,餘弦定理揭示了三角形的邊角之間的關係,是解三角形的重要工具之一.(3)餘弦定理的三個等式中,每一個都包含四個不同的量,它們是三角形的三邊和一個角,知道其中的三個量,代入等式,就可以求出第四個量.
  • 衝刺2018年高考數學,典型例題分析23:餘弦定理和正弦定理
    考點分析:餘弦定理;正弦定理.題幹分析:(Ⅰ) 在△APC中,由余弦定理得AP2﹣4AP+4=0,解得AP=2,可得△APC是等邊三角形,即可得解.(Ⅱ) 法1:由已知可求∠APB=120°.利用三角形面積公式可求PB=3.進而利用餘弦定理可求AB,在△APB中,由正弦定理可求sin∠BAP的值.
  • 第二十六期高中數學解三角形專題複習基礎篇1
    解三角形,是高考必考的內容,一般考察兩個小題或1個大題,佔分為10-12分。其中,最主要的就是圍繞正弦定理與餘弦定理的考察,以這兩個定理為基礎,進而考察求邊,求角,判斷三角形解的個數,判斷三角形形狀,求三角形的周長或面積,以及周長或面積的最值問題等,這些都是常考題型。
  • 高中數學複習之三角函數與三角形
    角講完了,講三角函數,三角函數裡面重要有幾個:兩角和差的公式,誘導公式,三角函數的平移伸縮,三角函數看圖寫表達式!我們一個個說一下。首先是兩角和與差的公式,我都有推過,大家可以去看我的文章,有詳細的推導過程!其次,誘導公式,這個建議大家在處理的時候,直接記下來!實在沒把握,草稿紙上用兩角和與差的公式,這個是最次的了方法了!
  • 高中數學:公式定理+解題方法+例題,解決三角函數大難題!
    在高中數學中,三角函數相關知識既是重點也是難點,以高考全國一卷為例,從2015年到2019年,三角函數部分最少佔5分分值,最多佔12分分值,並且都是高頻必考考點,其重要性可見一斑。今天小編就來和大家分享三角函數相關知識,不論是正在學習的高一學生,還是已經在複習的高三學生,都會對你非常有幫助的。
  • 正弦定理、餘弦定理
    正弦定理(Law of Sines)在一個三角形中,各邊和它所對角的正弦的比值相等。已知三角形的幾個元素求其它元素的過程叫做解三角形(Sloving Triangles)。  2.   餘弦定理(Law of Cosines)三角形中任何一邊的平方 = 其它兩邊的平方和減去這兩邊與它們的夾角的餘弦的積的兩倍。
  • 餘弦定理及其應用的深入剖析
    (2)與正弦定理一樣,餘弦定理揭示了三角形的邊角之間的關係,是解三角形的重要工具之一.(3)餘弦定理的三個等式中,每一個都包含四個不同的量,它們是三角形的三邊和一個角,知道其中的三個量,代入等式,就可以求出第四個量.(4)運用餘弦定理時,若已知三邊(求角)或已知兩邊及夾角(求第三邊),則由三角形全等的判定定理知,三角形是確定的,所以解也是唯一的.
  • 餘弦定理的證明方法大全
    餘弦定理定理證明
  • 原來高中的餘弦定理可以這樣學,真是通俗易懂啊
    小編一直以來寫的都是初中數學的內容,今天小編講解一點高中數學的內容,供大家是審閱,也希望起到拋磚引玉的效果。好了,開始進入今天的主題——餘弦定理。而餘弦定理一向是高考重點考查的內容,所有作為高中生在高考總複習中,一定要重視這一塊的複習我們已經學習了正弦定理,它講的是三角形的邊與角的等量關係。那麼現在你還記得:正弦定理的內容是什麼嗎?你能用文字語言、數學語言敘述嗎?你能用哪些方法證明呢?
  • 數學中的解三角形很難嗎?重點就是合理轉化邊角關係
    高中數學必修內容中解三角形有著一席之地,要通過對任意三角形的邊長和角之間的關係進行轉換,就要用到正餘弦定理及其性質和證明方法。基本關係是建立在三角形內角和為180度基礎上進行三角之間的轉換,合理運用三角函數對問題進行探索和證明。
  • 餘弦定理的多種證明方法
    大家好,今天我們來看看餘弦定理的證明方法,有好多種,我試試看今天能寫多少種?餘弦定理:指三角形任何一邊的平方等於其他兩邊平方的和減去這兩邊與他們夾角的餘弦的積的兩倍。即在△ABC中,已知AB=c,AC=b,BC=a,則有
  • 高中數學三角函數公式大全(重要知識點梳理)
    高中數學三角函數公式大全(重要知識點梳理)教學目標1、了解任意角三角函數的概念,弧度制與角度制互化。2、能推導三角函數誘導公式、 能畫出三角函數圖像、理解其性質,並進行平移變換。3、掌握兩角和的正弦、餘弦、公式,及其二倍角、半角公式,掌握並運用正弦定理、餘弦定理解決問題。
  • 教學研討|正弦、餘弦定理應用之邊角轉換·教案·課件
    研討素材一一、教學目標(1) 知識與技能: 了解正餘弦定理的內容,能綜合利用正餘弦定理解決三角形形狀的判斷及求邊、角等問題。(2) 過程與方法: 學生分析、解答問題,學會綜合運用正餘弦定理、三角函數公式及有關性質求解三角形問題。(3) 情感、態度與價值觀 :通過正餘弦定理邊角互換時所發揮的橋梁作用來反映事物之間的內在聯繫。
  • 正弦定理和餘弦定理的證明過程匯總和適用的條件
    正弦定理和餘弦定理是解三角形的工具,它們使用的範圍不局限於直角三角形當中,可以在任意的三角形中使用。正弦定理在各個三角形中的證明過程正弦定理適用於任何的三角形中,而三角形可以分為三類,即直角三角形、銳角三角形、鈍角三角形。在直角三角形中的證明過程也是必修5中證明的過程。
  • 解三角形除了正餘弦定理,還可以用射影定理
    第一問很自然先想到正弦定理,發現可以接著利用和角公式化簡,得到sinB=sin(A-B),這個地方要注意角的範圍(0,π),B與(A-B)兩角關係一是相等,二是互補,其中一種情況不符合題意捨去。方法2利用餘弦定理稍顯複雜,主要原因是利用餘弦定理直接看不出方向,能想到用餘弦二倍角公式還是不容易的,而且要得到cosA=cos2B這個等量關係,推導過程計算是有點麻煩的,其實也就是有從結論入手反推,總之,這條路肯定行得通,但是不建議大家採用從射影定理入手,額~~~慢慢算吧做題就像回家
  • 餘弦定理知識點總結及典型例題
    餘弦定理和正弦定理是高中階段解三角形的理論基礎,上期分享了正弦定理的基礎知識和常見題型,本期小編和大家分享一下餘弦定理的基礎知識和基本題型及常用解題技巧。一、基礎知識二、典型例題題型一、餘弦定理的基本概念總結:(1)在解三角形的時候,我們什麼時候選擇正弦定理什麼時候選擇餘弦定理呢?