參考文獻
[1] Watts JL. Etiological agents of bovine mastitis.[J]. Veterinary Microbiology, 1988, 16(1):41-66.
[2] Inc. N M C. Current concepts of bovine mastitis.[M]// Current concepts of bovine mastitis. National Mastitis Council, 1987.
[3] 張官祥. 奶牛乳房炎引發的經濟損失[J]. 農業技術與裝備,2009(7):32-33.
[4] 劉龍海, 李新圃, 楊峰,等. 奶牛乳房炎綜合防控關鍵技術研究進展[J]. 中國草食動物科學, 2015, 35(5):56-61.
[5] Makovec JA, Ruegg PL. Results of milk samples submitted for microbiological examination in Wisconsin from 1994 to 2001[J]. Journal of Dairy Science, 2003, 86(11):3466-3472.
[6] Carl-Fredrik J, Karin A, Robert S, et al. Mastitis Pathogens with High Virulence in a Mouse Model Produce a Distinct Cytokine ProfileIn Vivo:[J]. Frontiers in Immunology, 2016, 7.
[7] Schabauer L, Wenning M, Huber I, et al. Novel physicochemical diagnostic tools for high throughput identification of bovine mastitis associated gram-positive, catalase-negative cocci[J]. BMC Veterinary Research,2014, 10(1):156.
[8] Sandt C, Sockalingum GD, Aubert D, et al. Use of Fouriertransform infrared spectroscopy for typing of Candida albicans strains isolated in intensive care units.[J]. Journal of Clinical Microbiology, 2003, 41(3):954-959.
[9] Goerges S, Mounier J, Rea MC, Gelsomino R, Heise V, Beduhn R, Cogan TM, Vancanneyt M, Scherer S. Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a South german red smear cheese.[J]. Applied & Environmental Microbiology, 2008, 74(7):2210.
[10] Ehlingschulz M, Messelhäusser U, Granum PE, et al. Bacillus cereus in milk and dairy production.[J]. Rapid Detection Characterization & Enumeration of Foodborne Pathogens, 2011.
[11] Martins RF, Do PPT, De ACC, et al. Mastitis detection in sheep by infrared thermography[J]. Research in Veterinary Science, 2013, 94(3):722-724.
[12] Kunc P, Knizkova I, Prikryl M, et al. Infrared thermography as a tool to study the milking process: A review[J]. Agricultura Tropica Et Subtropica, 2007, 40(1):29-32.
[13] Sathiyabarathi M, Jeyakumar S, Manimaran A, et al. Investigation of body and udder skin surface temperature differentials as an early indicator of mastitis in Holstein Friesian crossbred cows using digital infrared thermography technique[J]. Veterinary World, 2016, 9(12):1386-1391.
[14] Sepúlveda-Varas P, Proudfoot KL, Weary DM, et al. Changes in behaviour of dairy cows with clinical mastitis[J]. Applied Animal Behaviour Science, 2016, 175:8-13.
[15] Stangaferro ML, Wijma R, Caixeta LS, et al. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part II. Mastitis[J]. Journal of Dairy Science, 2016, 99(9):7411-7421.
[16] Yazdanbakhsh O, Zhou Y, Dick S. An Intelligent System for Livestock Disease Surveillance[J]. Information Sciences, 2017, 378:26-47.
[17] Zhang Z, Song Y, Cui H, et al. Early mastitis diagnosis through topological analysis of biosignals from low-voltage alternate current electrokinetics.[C]// Engineering in Medicine and Biology Society. IEEE, 2015:542-545.
[18] Ganda EK, Bisinotto RS, Decter DH, et al. Evaluation of an OnFarm Culture System (Accumast) for Fast Identification of Milk Pathogens Associated with Clinical Mastitis in Dairy Cows[J]. Plos One, 2016, 11(5):e0155314.
[19] Chinnappan R, Attas SA, Koop G, et al. Development of magnetic nanoparticle based calorimetric assay for the detection of bovine mastitis in cow milk[J]. Analytical Biochemistry, 2017, 523:58-64.
[20] Bikker FJ, Koop G, Leusink NB, et al. Tailor made plasmin substrates as potential diagnostic tool to test for mastitis[J]. Veterinary Research Communications, 2014, 38(4):271-277.
[21] Gosalia DN, Salisbury CM, Maly DJ, et al. Profiling serine protease substrate specificity with solution phase fluorogenic peptide microarrays.[J]. Proteomics, 2010, 5(5):1292-1298.
[22] Peedel D, Rinken T. Rapid biosensing of Staphylococcus aureus bacteria in milk[J]. Analytical Methods, 2014, 6(8):2642.
[23] Duarte C, Costa T, Carneiro C, et al. Semi-Quantitative Method for Streptococci Magnetic Detection in Raw Milk[J]. Biosensors, 2016, 6(2):19.
[24] Spittel S, Hoedemaker M. Mastitis diagnosis in dairy cows using PathoProof real-time polymerase chain reaction assay in comparison with conventional bacterial culture in a Northern German field study[J]. Berliner Und Münchener Tierärztliche Wochenschrift, 2012, 125(11-12):494.
[25] Ceciliani F, Eckersall D, Burchmore R, et al. Proteomics in veterinary medicine: applications and trends in disease pathogenesis and diagnostics[J]. Veterinary Pathology, 2014, 51(2):351-362.
[26] Thomas FC, Waterston M, Hastie P, et al. The major acute phase proteins of bovine milk in a commercial dairy herd[J]. Bmc Veterinary Research, 2015, 11(1):207.
[27] Boehmer JL. Proteomic analyses of host and pathogen responses during bovine mastitis[J]. Journal of Mammary Gland Biology & Neoplasia, 2011, 16(4):323-338.
[28] Grönlund U, Hultén C, Eckersall PD, et al. Haptoglobin and serum amyloid A in milk and serum during acute and chronic experimentally induced Staphylococcus aureus mastitis[J]. Journal of Dairy Research, 2003, 70(4):379-386.
[29] Hussein HA, Kaea ER, Gomaa AM, et al. Milk amyloid A as a biomarker for diagnosis of subclinical mastitis in cattle[J]. Vet World, 2018, 11(1):34-41.
[30] Mansor R, Mullen W, Albalat A, et al. A peptidomic approach to biomarker discovery for bovine mastitis[J]. Journal of Proteomics, 2013, 85(5):89-98.
[31] Mudaliar M, Tassi R, Thomas FC, et al. Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 2. Label-free relative quantitative proteomics[J]. Molecular Biosystems, 2016, 12(9):2748-2761.
[32] Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA.[J]. Nucleic Acids Research, 2000, 28(12):E63.
[33] Sayad A, Ibrahim F, Uddin SM, et al. A Microdevice for Rapid, Monoplex and Colorimetric Detection of Foodborne Pathogens using a Centrifugal Microfluidic Platform[J]. Biosensors & Bioelectronics, 2017,100(03):96-104.
[34] Phuektes P, Mansell PD, Browning GF. Multiplex Polymerase Chain Reaction Assay for Simultaneous Detection of Staphylococcus aureus, and Streptococcal Causes of Bovine Mastitis[J]. Journal of Dairy Science, 2001, 84(5):1140-1148.
[35] Duarte CM, Freitas PP, Bexiga R. Technological advances in bovine mastitis diagnosis: an overview.[J]. Journal of Veterinary Diagnostic Investigation Official Publication of the American Association of Veterinary Laboratory Diagnosticians Inc, 2015, 27(6):665-72.
[36] Mahmmod YS, Klaas IC, Nielsen SS, et al. Effect of presampling procedures on real-time PCR used for diagnosis of intramammary infections with Staphylococcus aureus in dairy cows at routine milk recordings[J]. Journal of Dairy Science, 2013, 96(4):2226-2233.
[37] Mahmmod YS, Mweu MM, Nielsen SS, et al. Effect of carryover and presampling procedures on the results of real-time PCR used for diagnosis of bovine intramammary infections with Streptococcus agalactiae, at routine milk recordings[J]. Preventive Veterinary Medicine, 2014, 113(4):512-521.