海歸學者發起的公益學術平臺
分享信息,整合資源
交流學術,偶爾風月
含鐵氧化物作為研究Mott轉變的模型對象,在地球下地幔和外核的礦物學中起著重要作用。最近,由於它們在高壓-高溫條件下具有複雜的電子、磁性和晶體結構行為,這些化合物引起了人們極大的興趣。
眾所周知,這些材料在壓縮後會表現出磁塌陷,即鐵離子從高自旋(High-spin)到低自旋(low-spin)態的交叉,導致其物理性質急劇變化。實際上,它們的體模量、密度和彈性特性的反常行為對於理解地球下地幔和外核的地震觀測和動力學過程來說是至關重要的,如解釋位於地幔底部400 km處的反常地震行為。地球的地幔,位於所謂的D''區。赤鐵礦(α- Fe2O3)在高壓下的電子和結構特性,是Mott絕緣材料的「經典」實例,對其在基礎科學和技術中的應用都特別令人生趣。但其高壓特性,如豐富的同分異構行為、釋放氧氣、出現一系列同系的nFeO-mFe2O3氧化物(以白鎢礦、FeO和Fe2O3為末端成員),以及Fe3+在自然和地球下地幔的性質和動力學中的作用等,至今仍不勝寥寥,在地球物理學和地球化學領域,以及現在的材料學領域都引起了眾多關注。現在的這一研究證明,在Mott轉變區,電子關聯與晶格之間的相互作用會導致Fe2O3呈現複雜的電子結構和磁態,增強了Fe2O3的結構複雜性,並指出了高溫高壓下這些亞穩結構的重要性。分別來自俄羅斯M.N. 俄羅斯科學院米赫耶夫金屬物理研究所和國立科技大學「MISIS」材料建模與開發實驗室的Ivan Leonov和Igor A. Abrikosov教授,利用密度泛函-動態平均場理論(DFT + DMFT)的方法,從微觀上解釋了在高壓下穆斯堡爾光譜中觀察到的高自旋(high-spin)態到低自旋(low-spin)態的共存,提出了一類新的Mott系統——具有位置選擇性的局部磁矩。這對理解地球下地幔和外核的性質和演化具有重要的影響。這項研究揭示了Fe2O3在高壓下具有複雜的電子結構和晶體結構(如其複雜的同分異構相和亞穩相),有可能影響現有的地球物理和地球化學模型。該文近期發表於npj Computational Materials 5: 90 (2019),英文標題與摘要如下,點擊左下角「閱讀原文」可以自由獲取論文PDF。Charge disproportionation and site-selective local magnetic moments in the post-perovskite-type Fe2O3 under ultra-high pressuresThe archetypal 3d Mott insulator hematite, Fe2O3, is one of the basic oxide components playing an important role in mineralogy of Earth’s lower mantle. Its high pressure–temperature behavior, such as the electronic properties, equation of state, and phase stability is of fundamental importance for understanding the properties and evolution of the Earth’s interior. Here, we study the electronic structure, magnetic state, and lattice stability of Fe2O3 at ultra-high pressures using the density functional plus dynamical mean-field theory (DFT + DMFT) approach. In the vicinity of a Mott transition, Fe2O3 is found to exhibit a series of complex electronic, magnetic, and structural transformations. In particular, it makes a phase transition to a metal with a post-perovskite crystal structure and site-selective local moments upon compression above 75 GPa. We show that the site-selective phase transition is accompanied by a charge disproportionation of Fe ions, with Fe3±δand δ ~ 0.05–0.09, implying a complex interplay between electronic correlations and the lattice. Our results suggest that site-selective local moments in Fe2O3 persist up to ultra-high pressures of ~200–250 GPa, i.e., sufficiently above the core–mantle boundary. The latter can have important consequences for understanding of the velocity and density anomalies in the Earth’s lower mantle.
本文系網易新聞·網易號「各有態度」特色內容
媒體轉載聯繫授權請看下方