基於MEMS慣性傳感器的加速度測量無線傳輸系統設計

2021-01-09 電子產品世界

  微電子與微機械(MEMS)技術的發展,使現代傳感器設計向微型化、智能化、集成化、微低功耗方向發展。MEMS技術突破了傳統傳感器設計受質量、體積、功耗等技術瓶頸的束縛,在各測量領域有著非常廣泛的應用。而隨著無線技術的發展,傳感器技術與無線技術結合得越來越緊密,利用無線技術開發信號採集無線傳輸模塊可以克服有線傳輸的弊端。

本文引用地址:http://www.eepw.com.cn/article/201710/367104.htm

  本文結合三軸線性MEMS慣性傳感器LIS331DL和單片無線收發器nRF905構建加速度測量無線傳輸系統,避免因採用傳輸導線所帶來的不利影響和使用上的不方便。該系統的特點是集電源、加速度傳感器、微控器、射頻收發器於一體,體積小、功耗低,能夠實現對運動物體三維方向上加速度的測量。所設計的系統裝置可以非常方便地固定於運動物體上,尤其適合近距複雜環境中對運動物體加速度的測量。

  1 系統組成和工作原理

  系統總體構成如圖1所示。系統分為主、從機兩部分。從機負責測量運動物體的加速度並通過射頻傳輸方式發射測量數據;主機負責接收從機發射的數據,對數據進行實時顯示,並將數據結果通過RS 232串口保存到PC機中以供分析。

  

  系統採用電池供電,在非工作模式下處於待機模式,通過控制按鍵實現工作模式和待機模式的切換以進一步節省功耗,保證電池長時間工作。

  2 硬體設計

  硬體設計主要包括傳感器與微控器外圍連接電路設計、射頻收發器與微控器外圍連接電路設計等。

  2.1 微控制器

  經對比選用高速C8051F310單片機作為系統的微控器。C8051F310是完全集成的混合信號片上系統型MCU晶片,具有片內上電復位、VDD監視器、看門狗定時器和時鐘振蕩器的真正獨立工作的片上系統,片內外設豐富。

  2.2 LIS331DL傳感器電路設計

  LIS331DL是ST納米運動傳感器家族中具有最小封裝(LGA16封裝,3 mm×3 mm×1 mm)、最低功耗(小於1 mW)的三軸線性加速度傳感器。

  

  邏輯框圖如圖2所示。LIS331DL內部有按互相垂直關係放置的三個敏感質量塊。當有外界加速度作用時,敏感質量塊會偏離其平衡位置一段位移,外界加速度越大位移就越大。由於敏感質量塊位於兩個電極組成的電容之間,質量塊位移的變化會引起電容電極兩端電荷量的變化,電荷量的變化經電容/電壓變換器轉化為電壓的變化,A/D轉換器將模擬電壓值轉換為二進位數字值,從I2C/SPI串行接口的三個輸出軸以二進位補碼的形式輸出。該晶片能夠測量運動物體在三維空間的線加速度,三個輸出軸上加速度的矢量和即為運動物體的加速度。

  該晶片具有標準的I2C/SPI串行總線接口,內置嵌入式功能,為用戶提供動態可編程設置的兩個量程±2g/±8g以適應不同的應用場合,數據輸出速率可編程選擇為100 Hz/400 Hz以適應不同外設的速率要求。當外界加速度值超過三個輸出軸中至少一個軸的可編程加速度閾值時,晶片可被配置用以產生慣性喚醒/自由落體中斷信號。 LIS331DL能夠承受10 000g的加速度衝擊而依然保持性能不變。

  

  LIS331DL與C8051F310的電路連接如圖3所示。C8051F310內部有一個標準的SPI串行接口,通過交叉開關將C8051F310(主機)的四線制SPI外部引腳配置在P0.0(總線時鐘SCK)、P0.1(主人從出MISO)、P0.2(主出從入)和P0.3(從機SPI片選CS)這四個引腳上,LIS331DL作為SPI總線的從機,主機和從機通過SPI總線進行數據傳輸,總線時鐘由主機決定。從機的兩個中斷標誌輸出引腳接到主機的 P0.6和P0.7,主機內的交叉開關將兩個外部中斷標誌輸入引腳配置在P0.6和P0.7,它們連接到從機的兩個中斷標誌輸出9號和11號引腳,這樣可以進行LIS331DL功能的擴展(自由落體中斷檢測,內部喚醒等)。

  2.3 nRF905單片機無線收發器電路設計

  本測量系統中採用nRF905射頻晶片作為射頻收發器。nRF905採用Nordic公司的VLSI ShockBurst技術。ShockBurst技術使nRF905能夠提供高速的數據傳輸而無需昂貴的高速MCU來進行數據處理/時鐘覆蓋。通過將與 RF協議有關的高速信號處理放到晶片內,nRF905提供給微控器一個SPI接口,速率由微控器設定的接口速率決定。nRF905通過 ShockBurst工作模式在RF以最大速率進行連接時降低數字應用部分的速率來降低在應用中的平均電流消耗。

  

  nRF905與C8051F310的電路連接如圖4所示。C8051F310的SPI同步串行口已作為與LIS331DL的通信接口,為充分利用C8051F310的引腳資源,取C8051F310的P1.0,P1.1,P1.2和P1.3四個IO口組成一個模擬SPI串口與nRF905的 SPI口相連接,數據採用單字節逐次移位的方式進行傳輸。

  C8051F31O作為SPI主機,nRF905作為從機。主機在P1.0引腳提供主機模擬SPI時鐘,P1.1引腳作為主機模擬MISO 線,P1.2引腳作為主機模擬MOSI線,P1.3引腳作為從機SPI片選線。主機通過此模擬SPI串行口在配置模式下對從機相關寄存器進行配置;在RF 發射和接受模式下進行發射數據的傳送和接收數據的讀取。nRF905的工作狀態接口由CD,AM和DR組成;工作模式控制引腳由PWR,TRX和TX組成,C8051F310通過P1.4,P1.5和P1.6來設置nRF905的工作模式,具體模式設置如表1所示。

  

  進入ShockBurst RX模式650μs後,nRF905不斷檢測,等待接收數據。當檢測到同一頻段的載波時,載波檢測引腳CD被置高,當接收到一個相匹配的地址,地址檢測引腳AM被置高,當一個正確的數據包接收完畢,nRF905自動移去字頭、地址和CRC校驗位,然後將DR引腳置高,通知MCU讀取數據,數據讀取完畢DR 引腳置低。

  當有數據要發送時,MCU按時序將接收機的地址和要發送的數據傳送給nRF905,SPI接口速率在通信協議和器件配置時確定。進入Shock Burst TX模式650us後,射頻寄存器自動開啟,進行數據打包(加字頭和CRC校驗碼),發射數據包。當數據發射完成,DR引腳置高通知MCU數據已成功發送。

  3 軟體設計

  軟體採用結構化程序設計方法,由主程序和各任務子程序組成。系統上電後,C8051F310完成對自身、LIS331DL傳感器和射頻收發器nRF905的初始化設,根據鍵值電平高低來決定是否進入工作狀態。

  在從機進入工作狀態後,C8051F310通過SPI同步串行口讀取LIS331DL傳感器X,Y和Z軸寄存器的值,根據三個數值求出加速度值,然後將該數值連同主機地址一起通過模擬SPI口傳給nRF905,由其自動完成數據的發送;主機進入工作狀態後不斷檢測有效載波,當攜帶有效數據的載波出現後,nRF905自動完成去除數據包中的地址、CRC校驗位和加速度數據的提取操作,此操作完成後通知C8051F310讀取數據直至數據讀取完畢,C8051F310將數據先在LCD1602液晶顯示器中進行顯示,然後通過RS232將數據保存到PC機,系統程序流程如圖5所示。

  

  4 系統調試

  在旋轉試驗臺上進行系統的測試。試驗方案為:從機固定在距旋轉臺中心一定距離處,通過調整轉臺的轉速來獲得不同的法向加速度,從機對法向加速度進行測量,測量結果以射頻方式傳給主機進行顯示和保存。該系統在試驗中運行可靠,測量結果準確性高,由於採用數字式射頻傳輸方式使數據傳輸誤碼率極低。

  5 結論

  採用無線數字傳輸方式避免了傳輸導線的內阻和雜散分布電容、環境溫度、電磁幹擾等影響,尤其適合於複雜環境下運動物體加速度的測量,這一特點是有線傳輸方式所無法比擬的。

相關焦點

  • 基於MEMS六軸傳感器的可穿戴運動監測系統設計
    對於可穿戴設備的研究核心在於可穿戴傳感器的研究。可穿戴設備的功能日趨強大與其內部使用的可穿戴傳感器數量的增加和性能提高息息相關。本文基於MEMS 六軸傳感器技術,目的在於設計出一套可以用於運動軌跡檢測的可穿戴設備。
  • 無線加速度傳感器,加速度傳感器分類介紹
    那麼大家知道無線加速度傳感器嗎?今天小編就為大家介紹一下吧。新型地震加速度傳感器採用傳感器和控制系統一體化的設計,傳感器採用低功耗微型電子電容式加速度傳感器,控制系統使用嵌入式系統,配置了數據採集、電源、授時、通信等模塊,具備有線、無線的多種通信功能,可以在室內外進行大量的布設,通過多種方式聯網,可及時將數據傳回處理中心進行實時處理。
  • 基於MEMS技術的加速度傳感器分析與應用
    其實基於MEMS技術的加速度傳感器、壓力傳感器、陀螺儀等已經有30餘年的應用歷史,但由於技術和成本等多方面的原因,這些技術主要應用於工業、軍事、汽車製造、儀器儀表,及醫療等領域,而未進入消費類產品市場。目前的情況則已大幅改觀,MEMS技術已不像幾十年前那樣貴如珠寶,低成本、小尺寸、低功耗、高性能的MEMS傳感器產品已掀起新的設計和消費浪潮。
  • 基於MEMS的慣性導航教學實驗系統*
    基於此,設計了一套基於MEMS的慣性導航實驗系統,系統由慣性測量單元,上位機,雙軸電動轉臺及轉臺控制器組成。該慣性測量單元由六軸慣性測量組合[2-4],包含三軸陀螺儀、三軸加速度計,該實驗平臺能滿足導航、制導與控制專業的學生了解慣性導航原理,有助於學生理解、熟悉、掌握慣性導航和運動狀態採集的原理、技術及應用。
  • 基於MEMS技術的IMU慣性測量單元的工作原理解析
    基於MEMS技術的IMU,以及MEMS慣性傳感器,將是未來發展的重點。 慣性測量單元Inertial measurement unit,簡稱IMU,是測量物體三軸姿態角(或角速率)及加速度的裝置。陀螺儀和加速度計,是慣性導航系統的核心裝置。藉助內置的加速度傳感器和陀螺儀,IMU可測量來自三個方向的線性加速度和旋轉角速率,通過解算可獲得載體的姿態、速度和位移等信息。
  • 基於ARM與MEMS器件的微慣性測量裝置設計
    在仿生推進機理的研究中,精確測量魚類尾鰭拍動參數對於魚類仿生推進機理研究及工程應用具有重要的意義;然而,目前研究者大多採用分析高速攝像機拍攝的圖像獲得參數的觀測方法。這種方法受到環境與設備的限制,結果精確度較差。本設計是一種基於MEMS器件的生物運動微慣性測量裝置。
  • mems傳感器現狀_mems傳感器製作工藝
    mems傳感器研究現狀   1、微機械壓力傳感器   微機械壓力傳感器是最早開始研製的微機械產品,也是微機械技術中最成熟、最早開始產業化的產品。國內在微加速度傳感器的研製方面也作了大量的工作,如西安電子科技大學研製的壓阻式微加速度傳感器和清華大學微電子所開發的諧振式微加速度傳感器。後者採用電阻熱激勵、壓阻電橋檢測的方式,其敏感結構為高度對稱的4角支撐質量塊形式,在質量塊4邊與支撐框架之間製作了4個諧振梁用於信號檢測。   3、微機械陀螺   角速度一般是用陀螺儀來進行測量的。
  • 基於組合導航的汽車姿態數據採集系統設計
    編者按:本文設計了一個基於組合導航的汽車姿態數據採集系統,該系統利用集加速度計和陀螺儀於一體的高精度高靈敏度的慣性測量晶片MPU6050,結合地磁傳感器形成的九軸傳感器,對汽車的線性加速度、角速度參數數據進行直接採集,以互補濾波實現九軸傳感器的誤差補償,用四元數法對其姿態解算
  • 基於慣性傳感技術的跌倒報警器
    圖1是跌倒報警器系統的原理圖,MPU6050六軸傳感器模塊包括三軸陀螺儀和三軸加速度計,通過I2C接口連接STM32,根據傳感器不同的地址信息分別讀取MPU6050的角速度值和加速度值,然後利用四元數算法和姿態控制算法分析老人身體姿態和運動狀態。
  • 利用MEMS 慣性傳感器改善系統性能
    最近的傳感器技術發展使得機器人和其他工業系統設計實現了革命性的進步。除了機器人以外,慣性傳感器有可能改善其系統性能或功能的應用還包括:平臺穩定、工業機械運動控制、安全/監控設備和工業車輛導航等。這種傳感器提供的運動信息非常有用,不僅能改善性能,而且能提高可靠性、安全性並降低成本。
  • 解析基於慣性傳感技術的跌倒報警器?
    基於上述原因,本文設計了一種可穿戴於腰部的跌倒報警器,跌倒檢測裝置內部有加速度計、陀螺儀和磁力計等慣性傳感元件,可以實現對老人跌倒的檢測,讓發生跌倒的老人可以及時得到醫療救援,降低跌倒對老人造成的傷害。
  • 半導體mems企業有哪些_國內十大半導體mems企業排行榜
    、生產商用MEMS陀螺儀系列慣性傳感器的MEMS晶片公司,成立於2008年8月,總部位於上海張江高科技園區。(CETC)旗下控股的有限責任公司,致力於MEMS器件與系統的研發、生產和銷售,經過近20年的技術積累,現已推出MEMS慣性器件與系統、汽車MEMS傳感器、射頻(RF)MEMS器件、光MEMS器件、MEMS熱式燃氣表等5大類25個系列核心產品。
  • MEMS加速度計國產化加劇,智騰微電子率先發力
    智騰微電子憑藉多年在高端傳感器製造業的經驗,投入大部分精力財力發展國產化mems加速度計製造,填補國內mems加速度計產業不足的空白。Sia200系列mems加速度計Mems加速度計Sia200系列是專門針對軍民高端慣性應用產品設計的產品,體積小
  • MEMS加速度傳感器在電機健康狀態監測上的應用
    據ADI代理商Excelpoint世健公司介紹,世健已經為湖南、四川等多個地區的鋼鐵、風電等客戶搭建了從傳感器到雲端的全套系統,目前進入前期導入階段。   常見的加速度傳感器主要有壓電陶瓷加速度傳感器、應變式加速度傳感器、電容式加速度傳感器和MEMS加速度傳感器,傳統的電機振動監測主要選用IEPE電壓輸出型壓電加速度傳感器。
  • 採用加速度傳感器的角度測量儀系統硬體電路設計
    目前已有的利用的加速度傳感器實現高精度角度測量的研究,主要側重於單軸的角度測量。本文將重點討論利用雙軸加速傳感器ADXL202實現高精度角度測量的硬體方法。  角度測量模塊  角度測量模塊使用的是ADI公司出品的低成本、低功耗、高精度的雙軸加速度傳感器 ADXL202,其測量範圍為-2g~+2g,既能測量動態加速度,又能測量靜態加速度。
  • (2-3合刊) 基於MEMS慣性傳感器的兩輪自平衡小車設計
    摘要:著重分析了兩輪自平衡小車的設計原理與控制算法,採用卡爾曼濾波算法融合陀螺儀與加速度計信號,得到系統姿態傾角與角速度最優估計值,通過雙閉環數字PID 算法實現系統的自平衡控制。設計了以MPU-6050傳感器為姿態感知的兩輪自平衡小車系統,選用8位單片機HT66FU50A為控制核心處理器,完成對傳感器信號的採集處理、車身控制以及人機互動的設計,實現小車自主控制平衡狀態、運行速度以及轉向角度大小等功能。
  • 加速度傳感器的分類、工作原理與內部結構
    加速度傳感器是一種能夠測量加速度的傳感器。通常由質量塊、阻尼器、彈性元件、敏感元件和適調電路等部分組成。傳感器在加速過程中,通過對質量塊所受慣性力的測量,利用牛頓第二定律獲得加速度值。由於有反饋作用,增強了抗幹擾的能力,提高測量精度,擴大了測量範圍,伺服加速度 測量技術廣泛地應用於慣性導航和慣性制導系統中,在高精度的振動測量和標定中也有應用。  加速度傳感器的工作原理  線加速度計的原理是慣性原理,也就是力的平衡,A(加速度)=F(慣性力)/M(質量)我們只需要測量F就可以了。怎麼測量F?
  • 基於射頻無線電力傳輸供電的無電池資產跟蹤模塊的先進監控系統
    為了滿足市場對先進無電池傳感器標籤解決方案日益增長的需求,本文提出一個在無線傳感器網絡中識別資產和監測資產移動速度的跟蹤系統,無電池的資產標籤通過射頻無線電力傳輸(WPT)架構接收數據通信所需電能,並採用一個獨有的測速方法生成時域速度讀數。
  • 體聲波陀螺儀傳感器引發慣性MEMS應用新變革
    體聲波陀螺儀的工作頻率和構造使之最大擁有±5000°/s的動態範圍和卓越的線性度(圖3),因而設計人員可以基於單個傳感器設計方案創建出一系列廣泛的應用。這一特性對於遊戲平臺尤具吸引力,包括Wii遙控器等專用控制器或手機、平板電腦等頻繁更新其設計的多用途消費類遊戲平臺。
  • Memsense公司開發用於無人系統的高性能慣性測量裝置
    Memsense公司宣布與無人系統技術公司達成合作協議,共同開發可用於無人系統的高性能慣性測量裝置。雙方希望通過合作,將各自的慣性設備和測量系統用於導航和控制、無人機上配置的天線和武器穩定性能中。