Claus R W, Lavelle T, Townsend S, et al. Variable Fidelity Analysis of Complete Engine Systems[R]. AIAA 2007-5042.
[2]Nichols L D, Chamis C C. Numerical Propulsion System Simulation: An Interdisciplinary Approach[R]. AIAA 91-3554.
[3]Claus R W, Evans A L, Lylte J K, et al. Numerical Propulsion System Simulation[J]. Computing Systems in Engineering, 1991, 2(4): 357-364. DOI:10.1016/0956-0521(91)90003-N
[4]Lytel J, Follen G, Naiman C, et al. 2001 Numerical Propulsion System Simulation Review[R]. NASA/TM-2002-211197.
[5]Gleen Research Center. Research & Technology 2001 [R]. NASA/TM-2002-211333.
[6]Lytle J K. Multi-Fidelity Simulations of Air Breathing Propulsion Systems[R]. AIAA 2006-4967.
[7]Witherell R E. Design Point Turbine Engine Performance Program[R]. AFAPL-TR-68-88.
[8]Koenibg R W, Fishbach L H. GENENG: A Program for Calculating Design and Off-Design Performance for Turbojet and Turbofan Engines[R]. NASA/TN-D-6552.
[9]Sellers J F, Daniele C J. DYNGEN: A Program for Calculating Steady-State and Transient Performance of Turbojet and Turbofan Engines[R]. NASA/TN-D-7901.
[10]Fishbach L H, Caddy M J. NNEP: The Navy NASA Engine Program[R]. NASA/TM-X-71857.
[11]Reed J A, Afjeh A A. An Object-Oriented Framework for Distributed Computational Simulation of Aerospace Propulsion Systems[C]. Santa Fe: Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS), 1998.
[12]Vissere W P J, Broomhead M J. GSP: A Generic Object-Oriented Gas Turbine Simulation Environment[R]. NLR-TP-2000-267.
[13]Byerley A R, Rouser K P, O'Dowd D O. Exploring GasTurb 12 for Supplementary Use on an Introductory Propulsion Design Project[R]. ASME GT 2017-63465.
[14]Bala A. Poly-Dimensional Gas Turbine System Modeling and Simulation[D]. England: Cranfield University, 2007.
[15]Alexiou A, Tsalavoutas T. Introduction to Gas Turbine Modelling with PROOSIS[M]. Madrid: Empresarios Agrupados Internacional (EAI), 2011.
[16]Lytle J K. The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace Vehicles[R]. NASA/TM-1999-209194.
[17]National Aeronautics and Space Administration. NPSS User Guide[M]. Cleveland: NASA Glenn Research Center, 2008.
[18]Lytle J K. The Numerical Propulsion System Simulation: An Overview[R]. NASA/TM-2000-209915.
[19]Charles L. An Overview of Three Approaches to Multidisciplinary Aeropropulsion Simulation[R]. NASA/TM-107443.
[20]Evans A L, Follen C, Naiman C, et. al. Numerical Propulsion System's National Cycle Program[R]. AIAA 98-3113.
[21]Alexiou A, Baalbergen E H, Koggenhop O, et al. Advanced Capabilities for Gas Turbine Engine Performance Simulation[R]. ASME GT 2007-27086.
[22]Pachidis V, Pilidis P, Guindeuil G, et al. A Partially Integrated Approach to Component Zooming Using Computational Fluid Dynamics[R]. ASME GT 2005-68457.
[23]Pachidis V, Pilidis P, Talhouarn F, et al. A Fully Integrated Approach to Component Zooming Using Computational Fluid Dynamics[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(3): 579-584. DOI:10.1115/1.2135815
[24]Pachidis V, Pilidis P, Alexander T, et al. Advanced Performance Simulation of a Turbofan Engine Intake[J]. Journal of Propulsion and Power, 2006, 22(1): 201-205. DOI:10.2514/1.14244
[25]Pachidis V, Pilidis P, Templalexis I, et al. A De-coupled Approach to Component High-Fidelity Analysis Using Computational Fluid Dynamics[J]. Journal of Aerospace Engineering, 2007, 221(1): 105-113.
[26]Pachidis V, Pilidis P, Texeira J, et al. A Comparison of Component Zooming Simulation Strategies Using Streamline Curvature[J]. Journal of Aerospace Engineering, 2007, 221(1): 1-15.
[27]何謙. 航空發動機數值仿真工程應用研究[D]. 成都: 電子科技大學, 2008.
[28]Follen G, Aubuchon M. Numerical Zooming Between a NPSS Engine System Simulation and a One-Dimensional High Compressor Analysis Code[R]. NASA/TM-2000-209913.
[29]Sampath R, Irani R, Balasubramaniam M, et al. High Fidelity System Simulation of Aerospace Vehicles Using NPSS[R]. AIAA 2004-371.
[30]Connolly J W, Kopasakis G. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model[R]. AIAA 2014-3687.
[31]Allison D, Alyanak E. Development of Installed Propulsion Performance Model for High-Performance Aircraft Conceptual Design[R]. AIAA 2014-2725.
[32]Melloni L, Kotsiopoutlos P, Jackson A, et al. Military Engine Response to Compressor Inlet Stratified Pressure Distortion by an Integrated CFD Analysis[R]. ASME GT 2006-90805.
[33]Reitenbach S, Schnos M, Becker R G, et al. Optimization of Compressor Variable Geometry Settings Using Multi-Fidelity Simulation[R]. ASME GT 2015-42832.
[34]Pilet J, Lecordix J L, Nicolas G, et al. Towards a Fully Coupled Component Zooming Approach in Engine Performance Simulation[R]. ASME GT 2011-46320.
[35]Templalexis I, Alexiou A, Pachicis V, et al. Direct Coupling of a Turbofan Engine Performance Simulation[R]. ASME GT 2016-56617.
[36]Klein C, Reitenbach S, Schoenweitz D, et al. A Fully Coupled Approach for the Integration of 3D-CFD Component Simulation in Overall Engine Performance Analysis[R]. ASME GT 2017-63591.
[37]Hall E J. Modular Multi-Fidelity Simulation Methodology for Multiple Spool Turbofan Engines[C]. Moffet Field: NASA High Performance Computing and Communications Computational Aerosciences Workshop, 2000.
[38]Hall E J, Delaney R A, Lynn S R, et al. Energy Efficient Engine Low Pressure Subsystem Aerodynamic Analysis[R]. NASA/TM-1998-208402.
[39]Hall E J, Lynn S R, Heidegger N J, et al. Energy Efficient Engine Low Pressure Subsystem Flow Analysis[R]. NASA/CR-1998-206597.
[40]Reed J A, Turner M G, Norris A, et al. Towrds an Automated Full-Turbofan Engine Numerical Simulation[R]. NASA/TM-2003-2124942003.
[41]Turner M G, Reed J A, Ryder R, et al. Multi-Fidelity Simulation of a Turbofan Engine with Results Zoomed into Mini-Maps for a Zero-D Cycle Simulation[R]. ASME GT 2004-53956.
[42]Veres J P. Overview of High-Fidelity Modeling Activities in the Numerical Propulsion System Simulation Project[R]. NASA/TM-2002-211351.
[43]Adamczyk J J, Mulac R A, Celestina M L. A Model for Closing the Inviscid Form of the Average-Passage Equation System[J]. Journal of Turbomachinery, 1996, 108(2): 180-186.
[44]Kirley K R, Turner M G, Saeidi S. An Average Passage Closure Model for General Meshes[R]. ASME 99-GT-77.
[45]Adamczyk J J. Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design[J]. Journal of Turbomachinery, 1999, 122(2): 189-217.
[46]Turner M G. Full 3D Analysis of the GE90 Turbofan Primary Flowpath[R]. NASA/CR-2000-209951.
[47]Turner M G, Vitt P H, Topp D A, et al. Multistage Simulation of the GE90 Turbine[R]. ASME 99-GT-98.
[48]Liu N S, Quealy A. NCC: A Multidisciplinary Design/Analysis Tool for Combustion System[R]. NASA/CP-1999-208757.
[49]Liu N. On the Comprehensive Modeling and Simulation of Combustion Systems[R]. AIAA 2001-0805.
[50]Robert R J, Mcdivitt T. Application of the National Combustion Code towards Industrial Gas Fired Heaters[R]. AIAA 2000-0456.
[51]Ebrahimi H B, Ryder R C, Brankovic A, et al. A Measurement Archive for Validation of the National Combustion Code[R]. AIAA 2001-0811.
[52]Turner M G, Ryder R, Norris A, et al. High Fidelity 3D Turbofan Engine Simulation with Emphasis on Turbomachinery-Combustor Coupling[R]. AIAA 2002-3769.
[53]Turner M G, Norris A, Veres J P. High-Fidelity Three-Dimensional Simulation of the GE90[R]. NASA/TM-2004-212981.
[54]Claus R W, Lavelle T, Townsend S, et al. Challenges in the Development of a Multi-Fidelity, Coupled Component Simulation of Complex System [R]. AIAA 2008-4651.
[55]Claus R W, Lavelle T, Townsend S, et al. Coupled Component, Full Engine Simulation of a Gas Turbine Engine[R]. AIAA 2009-5017.
[56]Claus R W, Townsend S, Lavelle T, et al. A Case Study of High Fidelity Engine System Simulation[R]. AIAA 2006-4971.
[57]Schlüter J U, Wu X, Weide E, et al. Integrated LES-RANS of an Entire High-Spool of a Gas Turbine[R]. AIAA 2006-897.
[58]Schlüter J U, Apte S, Kalitzin G, et al. Unsteady CFD Simulation of an Entire Gas Turbine High-Spool[R]. ASME GT 2006-90090.
[59]Medic G, You D, Kalitzin G, et al. Integrated Computations of an Entire Jet Engine[R]. ASME GT 2007-27094.
[60]Turner M. Lessons Learned from the GE90 3-D Full Engine Simulations[R]. AIAA 2010-1606.
[61]張世錚, 逯根壽. 燃氣輪機設計點和非設計點性能計算方法和電腦程式[J]. 工程熱物理學報, 1983, 4(4): 321-323.
[62]童凱生. 航空渦輪發動機性能變比熱計算方法[M]. 北京: 航空工業出版社, 1991.
[63]唐海龍, 張津. 面向對象的航空發動機性能仿真程序設計方法研究[J]. 航空動力學報, 1999, 14(4): 421-424.
[64]竇建平, 黃金泉, 周文祥. 基於UML的航空發動機仿真建模研究[J]. 航空動力學報, 2005, 20(4): 684-688.
[65]任志彬, 孟光, 李防戰, 等. 基於Modelica和Dymola的航空發動機建模與性能仿真[J]. 燃氣渦輪試驗與研究, 2005, 18(4): 40-44.
[66]徐魯兵, 潘宏亮, 周鵬. 基於面向對象技術的航空發動機性能仿真框架設計[J]. 測控技術, 2007, 26(4): 83-86.
[67]黃家驊, 馮國泰. 航空發動機特性仿真技術的進展與展望[J]. 推進技術, 2002, 23(4): 346-351. (HUANG Jia-hua, FENG Guo-tai. Development and Expectation of Performance Simulation in Aviation Engine[J]. Journal of Propulsion Technology, 2002, 23(4): 346-351.)
[68]金捷. 美國推進系統數值仿真(NPSS)計劃綜述[J]. 燃氣渦輪試驗與研究, 2003, 16(1): 57-62.
[69]劉大響. 對加快發展我國航空動力的思考[J]. 航空動力學報, 2001, 16(1): 1-7.
[70]王國峰. CFD仿真技術在航空發動機中的應用[J]. 航空製造技術, 2012, 400(4): 98-99.
[71]姚昕. 航空發動機數值仿真技術發展與應用[J]. 現代國企研究, 2016(10): 150.
[72]曹志鵬, 劉大響, 桂幸民, 等. 某小型渦噴發動機二維數值仿真[J]. 航空動力學報, 2009, 24(2): 439-444.
[73]胡燕華. 基於二維模型的發動機總體設計多學科優化方法研究[D]. 南京: 南京航空航天大學, 2010.
[74]昌中宏, 唐海龍. 航空發動機整機二維氣動熱力數值模擬[J]. 推進技術, 2012, 33(3): 333-337. (CHANG Zhong-hong, TANG Hai-long. Aerothermodynamics Numerical Simulation of Integrated Aero Engine System[J]. Journal of Propulsion Technology, 2012, 33(3): 333-337.)
[75]航空發動機仿真集成管理平臺CANSSF的研究[C]. 北京: 中國航空學會第一屆航空發動機數值仿真與數位化設計學術交流會, 2008.
[76]衛剛, 李清華, 何謙. 發動機整機仿真軟體在工程設計中的應用[C]. 北京: 中國航空學會第一屆航空發動機數值仿真與數位化設計學術交流會, 2008.
[77]曹志鵬, 劉大響, 金捷, 等. CANSS1. 1系統應用[C]. 北京: 中國航空學會第一屆航空發動機數值仿真與數位化設計學術交流會, 2008.
[78]黃家驊, 馮國泰, 於廷臣, 等. 渦噴發動機渦輪改型匹配的數值仿真[J]. 推進技術, 2005, 26(2): 151-154. (HUANG Jia-hua, FENG Gou-tai, YU Ting-chen, et al. Numerical Simulation of Redesigned Turbine Matching in Turbojet Engine[J]. Journal of Propulsion Technology, 2005, 26(2): 151-154.)
[79]陳玉春, 黃興, 高本兵, 等. 發動機總體與尾噴管三維並行設計研究[J]. 航空動力學報, 2007, 22(10): 1695-1699. DOI:10.3969/j.issn.1000-8055.2007.10.019
[80]葉緯. 混合維數航空發動機總體性能計算程序構架初步研究[D]. 西安: 西北工業大學, 2007.
[81]陳玉春, 葉緯, 高本兵. 渦扇發動機特性仿真中的Zooming技術研究[J]. 計算機仿真, 2008(4): 13-15.
[82]Shi J W, Wang Z X, Zhang X B, et al. Performance Estimation for Fluidic Thrust Vectoring Nozzle Coupled with Aero-Engine[R]. AIAA 2014-3771.
[83]謝業平, 尚守堂, 李建榕, 等. 基於安裝性能的航空發動機中間狀態噴管調節計劃優化[J]. 航空動力學報, 2014, 29(1): 175-180.
[84]周樂儀. 航空發動機燃燒室數值縮放技術研究[D]. 北京: 北京航空航天大學, 2008.
[85]周樂儀, 嶽明. 航空發動機數值仿真縮放算法研究[C]. 北京: 中國航空學會第一屆航空發動機數值仿真與數位化設計學術交流會, 2008.
[86]Tang H L, Chen M, Jin D H, et al. High Altitude Low Reynolds Number Effect on the Matching Performance of a Turbofan Engine[J]. Journal of Aerospace Engineering, 2013, 227(3): 455-466.
[87]Bala A, Sethi V, Gatto E L, et al. Study of VSV Effects on Performance via Integrated Aerodynamic Component Zooming Process[R]. AIAA 2007-5046.
[88]Rousselot S, Ttuffi D, Doulgeris G, et al. Generation of a Quasi 3-D Map of a Half-Embedded Ultra High Bypass Ratio Turbofan Intake on the Wing of a Broad Delta Wing Airframe[R]. ASME GT 2008-51008.
[89]Reed J A, Afjeh A A. An Interactive Graphical System for Engine Component Zooming in a Numerical Propulsion System Simulation[R]. AIAA 95-0118.
[90]Reed J A. Development of a Prototype Simulation Executive with Zooming in the Numerical Propulsion System Simulation[R]. NASA/CR-200613.
[91]Afjeh A A, Homer P T, Lewandowski H, et al. Implementing Monitoring and Zooming in a Heterogeneous Distributed Jet Engine Simulation[J]. Simulation, 1997, 69(4): 205-218. DOI:10.1177/003754979706900403
[92]Irani R K, Graichen C M, Finnigan P M, et al. Object-Based Representations for Multidisciplinary Analysis[R]. AIAA 94-3093.