無機鈣鈦礦太陽能電池:光電轉換效率可達14.4%

2021-02-08 OFweek維科網

【引言】

有機-無機雜化鈣鈦礦太陽能電池因結構簡單,能量轉換率高,低成本以及溫和條件製備等優點,備受學術界的關注。但其存在一個致命的弱點:光化學穩定性和熱穩定性差。相比之下,無機鈣鈦礦材料因其優異的穩定性成為研究者們新的關注熱點。但是由於其禁帶寬度大,大大限制了其光電轉換效率。在該研究中,作者設計分級帶隙的無機鈣鈦礦薄膜,調整了薄膜不同位置的帶隙,增大了薄膜厚度,鈍化表面,減小了電荷複合,最終得到的器件VOC高達1.20V,JSC 為15.25 mA/cm2,FF78.7%,光電轉換效率為14.4%。這是目前已知的無機鈣鈦礦太陽能電池的最高效率。

【成果簡介】

近日,陝西師範大學靳志文博士和劉生忠教授 (共同通訊作者),碩士生邊慧和白東良(共同一作)在Joule上發表了一篇名為 「Graded Bandgap CsPbI2+xBr1-x Perovskite Solar Cells with a Stabilized Efficiency of 14.4%」 的文章。在這次研究中,作者設計分級帶隙的無機鈣鈦礦薄膜。研究表明,分級帶隙設計可以有效的調整薄膜不同位置的帶隙,增大了薄膜厚度,增加了吸光效率,鈍化了表面,減小了電荷複合,最終器件光電轉換效率和穩定性都有一定的提高。

【圖文簡介】

圖一:器件結構圖和分級帶隙設計的研究

(a) 器件的結構示意圖;

(b) 器件的能級示意圖;

圖二:Mn離子摻雜CsPbI3 QDs的表徵

(a) 摻雜Mn的CsPbI3 QDs的TEM圖;

(b) 摻雜Mn的CsPbI3 QDs的HRTEM圖;

(c)&(d) 摻雜Mn的CsPbI3 QDs的XRD圖;

(e) 摻雜Mn的CsPbI3 QDs的XPS圖譜;

(f) SCN-離子處理CsPbI3 QDs的原理圖;

(g) 不同條件處理CsPbI3 QDs的紅外圖譜;

圖三:CsPbI3 QDs和 CsPbI2Br 電池的性能

CsPbI3 QDs鈣鈦礦太陽能電池:

(a) SEM圖和SEM截面圖;

(b) 改性前與改性後器件的J-V曲線;

(c) 器件的EQE曲線;

CsPbI2Br鈣鈦礦太陽能電池:

(d) SEM圖和SEM截面圖;

(e) 器件的J-V曲線;

(f) 器件的EQE曲線;

圖四:CsPbBrI2/CsPbI3 QDs分級能級器件的性能

(a) 不同器件的吸收圖;

(b) 用乙酸乙酯處理不同時間CsPbI3 QDs的吸收圖;

(c) 不同薄膜厚度CsPbI3 QDs的吸收圖;

(d) 表面垂直成分剖面的XPS圖;

(e) 用乙酸乙酯處理的表面垂直成分剖面的XPS圖;

(f) 吸收的結構示意圖;

(g) CsPbBrI2/CsPbI3 QD器件的J-V曲線;

(h) CsPbBrI2/CsPbI3 QD器件的EQE曲線.

圖五:最優器件的性能

(a) CsPbI3 QD厚度隨器件性能的變化;

(b) 器件的穩態測試;

(c)-(f)不同參數的統計數據。

【小結】

研究表明,作者設計分級帶隙的無機鈣鈦礦薄膜,調整了薄膜不同位置的帶隙,增大了薄膜厚度,鈍化表面,光電轉換效率可達14.4%。這是目前已知的無機鈣鈦礦太陽能電池的最高效率。

相關焦點

  • 光電轉換效率為23%的高性能四電極鈣鈦礦/無機矽疊層太陽能電池
    金屬有機滷化鈣鈦礦太陽能電池由於具有高性能、低價溶液製備工藝、以及匹配的禁帶寬度,在矽太陽能電池的基礎上集成鈣鈦礦太陽能電池有非常大的潛力來提高光電轉換效率從而降低光伏電能的成本
  • 全無機鈣鈦礦電池光電轉換效率達16.1%
    【能源人都在看,點擊右上角加'關注'】「倒裝式」結構設計的全無機鈣鈦礦電池近日,香港城市大學新研發的全無機鈣鈦礦電池的光電轉換效率達到16.1%,而獲中國計量科學研究院認證的效率亦高達15.6%。香港城市大學學務副校長兼化學及材料科學講座教授任廣禹指出,這次研究成果的突破在於找到了簡單方法,用於製造光電轉換效率與穩定性兼具的全無機鈣鈦礦電池。據悉,香港城市大學的研究團隊近年來一直在探索提高全無機鈣鈦礦光電轉換效率的方法。他們在製備鈣鈦礦的過程中添加了特製的小分子6T1C-4F,以減少表面或晶界的缺陷。
  • 鈣鈦礦太陽能電池光電轉換效率創新高
    上證報中國證券網訊(記者 陳其珏)美國國家可再生能源實驗室(NREL,National Renewable Energy Laboratory)近日更新的「電池實驗室最高效率」圖顯示,單結鈣鈦礦太陽能電池的效率再創新高,達到25.2%,比之前的24.2%提高了1%。
  • 發現鈣鈦礦太陽能電池製備新方法!最佳光電轉換效率提升至16.04%!
    -反溶劑策略成功製備出穩定高效的純無機CsPbI3鈣鈦礦太陽能電池的研究成果。近年來有機無機雜化鈣鈦礦太陽能電池由於其光電性能優異、製備方法簡單可控、成本低廉等優點受到了國內外科研及產業界的廣泛關注。目前有機無機雜化鈣鈦礦太陽能電池的效率已經突破25%,逼近商業晶矽電池。然而,有機無機雜化鈣鈦礦易分解、穩定性較差,這嚴重阻礙了其商業化應用。
  • 鈣鈦礦太陽能電池光電轉換效率創新高 達到25.2%
    中國財富網訊 據上證報中國證券網8月5日報導,美國國家可再生能源實驗室(NREL,National Renewable Energy Laboratory)近日更新的「電池實驗室最高效率」圖顯示,單結鈣鈦礦太陽能電池的效率再創新高,達到25.2%,比之前的24.2%提高了1%。
  • 比亞迪公開 「太陽能電池」相關專利,可提高太陽能電池的光電轉換...
    IT之家1月4日消息 企查查 App 顯示,比亞迪(002594)於 2021 年 1 月 1 日,公開一種 「光波轉換材料及其製備方法和太陽能電池」相關專利,公開號為:CN109988370B,申請時間為 2017 年 12 月 29 日。
  • 23.7%光電轉換效率 全鈣鈦礦疊層太陽能電池領域取得新進展
    近日,南京大學現代工程與應用科學學院譚海仁教授課題組與多倫多大學Edward Sargent教授團隊合作發表了窄帶隙鈣鈦礦及全鈣鈦礦疊層太陽能電池的最新研究成果,該成果以《Combining Efficiency and Stability in Mixed Tin-Lead Perovskite
  • 有機太陽能電池效率暴增32%(圖) - 光伏電池轉換效率
    為此,不少光伏企業把提高光電轉換效率作為搶佔先機的「法寶」。在受訪業內人士看來,雖然目前光伏電池轉換率臨近天花板,但隨著技術的不斷迭代,提高轉換效率仍將是光伏上下遊產業鏈的主攻方向。((...傳統矽太陽能電池板將太陽能轉換成電能的效率約為22%;而在2018年,OxfordPV研製出這款含有鈣鈦礦層的太陽能電池板,它的效率可以達到27.3%。(來源:微信公眾號「集邦新能源網」ID:EnergyTrend)鈣鈦礦太陽能電池板...
  • 北理在有機-無機雜化金屬滷素鈣鈦礦太陽能電池穩定性研究獲進展
    近年來,有機-無機雜化金屬滷素鈣鈦礦因其具有優異的光電轉換性能、組分多樣、帶隙可調且成本低廉等特性而受到廣泛研究和關注。目前,單節鈣鈦礦太陽能電池的光電轉換效率從3.8%已經提高到25.5%,用於綠色清潔能源的商業前景巨大。
  • 無機鈣鈦礦太陽能電池可簡化的僅剩下CsPbBr3層
    鈣鈦礦太陽能電池由於具有較高的光電轉換效率(> 22.7%),被研究人員認為是近年來最有希望解決能源問題的途徑之一。然而,傳統有機-無機雜化鈣鈦礦吸光材料的穩定性卻成為其商業化的最大障礙。為此,研究人員嘗試開發新型的鈣鈦礦結構吸光劑。
  • 鈣鈦礦或將代替晶矽 成為太陽能電池「新寵」
    鈣鈦礦或將代替晶矽 成為太陽能電池「新寵」北極星太陽能光伏網訊:光伏材料又稱太陽能電池材料,是指能將太陽能直接轉換成電能的材料。晶矽作為最主要的傳統光伏材料,其市場佔有率達90% 以上。1976 年出現新型薄膜太陽能電池,涉及材料包括硫化鎘、砷化鎵、銅銦硒等,光電轉換效率可達18%。
  • 無機鈣鈦礦電池性能調控方面取得新進展!
    有機-無機金屬滷化鈣鈦礦太陽電池因具有較高的光電轉換效率而受到廣泛關注,近年來發展迅速,成為光伏領域的研究熱點,但由於鈣鈦礦晶體結構中有機陽離子與碘鉛八面體之間作用力較弱,致使該材料在外界條件刺激下容易分解,制約其進一步發展。
  • 碘化銅可讓鈣鈦礦太陽能電池更便宜
    原標題:碘化銅可讓鈣鈦礦太陽能電池更便宜  科技日報訊 (記者王小龍)據物理學家組織網1月8日(北京時間)報導,美國諾特丹大學的科學家日前發現一種廉價的無機材料,能夠取代鈣鈦礦太陽能電池中昂貴的有機空穴導體,讓這種高效的太陽能電池更加便宜。相關論文發表在《美國化學學會會刊》上。
  • 鈣鈦礦太陽能電池穩定性及發展前景
    鈣鈦礦太陽能電池,科學家們在最新研究中發現,一種鈣鈦礦結構的有機太陽能電池的轉化效率或可高達22.1%,為目前市場上太陽能電池轉化效率的2倍,能大幅降低太陽能電池的使用成本。 儘管研究團隊還沒有演示以新材料為原料製造的高效太陽能電池,此項研究已成為此前諸多研究強有力的補充,證明了擁有獨特晶體結構的鈣鈦礦有望改變太陽能產業的面貌。當前市場上佔主流的太陽能電池以矽和碲化鎘為材料,達到目前的轉化效率歷時10多年;而鈣鈦礦只花了短短4年時間的研究,有鑑於此,即使業界保守人士也對鈣鈦礦非常看好。
  • 鈣鈦礦太陽能電池圖鑑——2018年度ESI高被引論文中的鈣鈦礦太陽能電池匯總
    1.提高電池效率轉換效率是衡量太陽能電池性能最重要的指標,目前用於提高鈣鈦礦太陽能電池的方法包括界面調控、改進鈣鈦礦電池的製備工藝、電池器件結構改進和材料改進等。這篇文章將從以上三個方面,來對2018年度JACS,Angew和AM上ESI高被引論文中的鈣鈦礦太陽能電池的研究進行一個匯總,看看鈣鈦礦這匹黑馬在光伏領域研究中的表現。基於金屬銫的鈣鈦礦太陽能電池由於其優異的穩定性在光伏領域具有廣闊的應用前景。然而,無機鈣鈦礦太陽能電池中的巨大能量損失已成為影響其最終效率的重要因素。
  • 新型鈣鈦礦太陽能電池的轉換效率預計接近40%
    在鈣鈦礦/矽串聯太陽能電池架構中,一種新材料具有驚人的38%理論最大轉換效率,顯示出巨大的潛力。當前,對全球氣候變化的強烈關注將影響並且已經在影響地球上的所有生物。為了防止所謂的「熱土」的產生並滿足《巴黎協定》的要求,清潔能源的使用和開發應超過當前水平。因此,人們對低成本太陽能電池模塊的開發寄予厚望。
  • 鈣鈦礦太陽能轉換效率再提高3%
    最近澳洲科學家便通過結構與石墨烯類似的磷烯(phosphorene),成功將鈣鈦礦太陽能轉換效率提升 2 到 3%。而磷烯是實實在在的半導體材料,能通過能隙來控制電流開關,導電性則跟石墨烯一樣,比現在使用的矽材料要快上數十甚至數百倍,因此澳洲福林德斯大學與昆士蘭大學等團隊便看好磷烯特性,認為它可以幫助鈣鈦礦太陽能一臂之力。
  • 韓國科學家刷新鈣鈦礦太陽能電池轉化效率記錄
    金屬滷化物鈣鈦礦是一類重要的有機-無機雜化材料。這類材料為高效太陽能光伏發電、光發射裝置... 2020-09-08 OxfordPV公司在傳統矽太陽能電池板中添加了一層鈣鈦礦材料,極大地提高了其轉換效率。
  • 英國公司將鈣鈦礦-矽晶太陽能電池轉換效率提升至 27.2%
    )矽晶太陽能電池 26.7% 的紀錄太陽能技術的進步可謂日新月異,光電轉換效率紀錄幾乎每隔幾周就會翻新。比如最近英國太陽能公司 Oxford PV 便將鈣鈦礦-矽晶太陽能技術的效率提高至 27.2%。矽晶太陽能為當前產業首選技術,便宜、高效又穩定的優勢讓太陽光電成為最受歡迎的再生能源,但以目前已大規模商業化的技術而言,其轉換效率預期很難超過 25%,因此科學家一直在尋找另一個太陽能明日之星。
  • > 基於石墨烯的太陽能電池轉化率達15.6%(圖) - 光伏電池轉換效率
    為此,不少光伏企業把提高光電轉換效率作為搶佔先機的「法寶」。在受訪業內人士看來,雖然目前光伏電池轉換率臨近天花板,但隨著技術的不斷迭代,提高轉換效率仍將是光伏上下遊產業鏈的主攻方向。((...傳統矽太陽能電池板將太陽能轉換成電能的效率約為22%;而在2018年,OxfordPV研製出這款含有鈣鈦礦層的太陽能電池板,它的效率可以達到27.3%。(來源:微信公眾號「集邦新能源網」ID:EnergyTrend)鈣鈦礦太陽能電池板...