中考數學診斷,一元二次解方程,配方公式大顯能

2020-12-06 數學診療師

大家好,眾所周不知我是個教數學的。今天終於輪到了一元二次方程的考點,老規矩我們來聊聊常見的題型。

一,根的判別式

一元二次方程的考查,在選擇題中常常會考根的情況

有些小童鞋完全領會了踏實求解的要義,老老實實解出方程的根再來判斷。其實只需要用到我們的法寶——根的判別式

概念:

圖1

這個題我們的做法就是

(1)先要化成一元二次方程的一般式

(2)再把相關的係數代入公式裡判斷與0的大小關係

所以這個方程有兩個不相等的實數根。

根的判別式的逆用也常考

提示:因為方程沒有根,所以利用上圖1中無解的情況來作,需要注意的是一次項係數是一個整體b=-2(m+1)需要大家代入公式的時候注意。

我們在做題的時候踏實重要但常見的技巧公式也要學會去用。

二,韋達定理

除了根的判別式,一元二次方程我們需要掌握的另一個基礎公式就是韋達定理(描述根與係數之間的關係,特別佩服這些偉大的數學家們,他們讓數學越來越簡單)

我們來看一道題

這個題雖然可以利用公式法解出來每一個根是多少,但最簡單的作法就是利用韋達定理

所以最後答案是,0

三,解一元二次方程

一元二次方程解法很多,不管用什麼解法前提是先要化成一般式

直接開平方是解一元二次方程裡最簡單的也是最基礎的,但它有一定的限制,不是所有的一元二次方程都能用直接開平方法。

這個常用的就是十字相乘,在一元二次方程的應用題裡往往最後的解題方法就是十字相乘

十字相乘文字解釋感覺有點繞,後面錄視

三,配方法

配方法步驟是

1,先化成一般式,注意二次項係數要化為一

2,常數項移到等號左邊再給方程兩邊各加上一次項係數一半的平方

3,方程左邊配成完全平方式然後直接開平方

公式法比較常用,所有的一元二次方程都可以用公式法解出答案

以上就是常用的解一元二次的方法,但在做題時我們用具體哪種方法,除了看題目要求再就是看你自己的熟練程度,這裡我以考試節省時間的角度考慮,推薦解題方法的順序

優先考慮直接開平方和因式分解,其次考慮配方法,最後公式法。

總之,一元二次方程解方程的題目中,還是要細心一點,做題時韋達定理和解方程的方法根據具體題目靈活應用。

最後謝謝大家關注,歡迎大家針對相關問題留言,我們一起互相學習進步。我只想努力讓孩子輕鬆學會數學的思考方法,而不是讓大家學會做題。

相關焦點

  • 2018中考數學知識點:一元二次方程求解方法
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了各學科的複習攻略,主要包括中考必考點、中考常考知識點、各科複習方法、考試答題技巧等內容,幫助各位考生梳理知識脈絡,理清做題思路,希望各位考生可以在考試中取得優異成績!下面是《2018中考數學知識點:一元二次方程求解方法》,僅供參考!
  • 2021初中七年級數學必備公式:一元二次方程的解
    中考網整理了關於2021初中七年級數學必備公式:一元二次方程的解,希望對同學們有所幫助,僅供參考。   一元二次方程的解   -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a   相關推薦:   2021年全國各省市中考報名時間匯總   2021年全國各地中考體育考試方案匯總   2021年全國各省市中考時間匯總
  • 2021年中考數學複習:一元二次方程配方法解析
    中考網整理了關於2021年中考數學複習:一元二次方程配方法解析,希望對同學們有所幫助,僅供參考。   解一元二次方程時,在方程的左邊加上一次項係數一半的平方,再減去這個數,使得含未知數的項在一個完全平方式裡,這種方法叫做配方,配方後就可以用因式分解法或直接開平方法了,這樣解一元二次方程的方法叫做配方法。
  • 初中數學解一元二次方程,四種解法各有不同,學會靈活運用
    一元二次方程是中考的重點內容,也是初中數學學習的重點,解一元二次方程是重要的應用,不管是直接開平方,還是配方法、公式法、因式分解法等等方法解方程,四種解法各有不同,不同的依據,不同的適用範圍,都需要同學們重點掌握的,然後根據題目的實際情況,選擇最佳的解題方法。
  • 暑假備戰中考:這裡有一份用公式法解一元二次方程的自學檢測題
    公式是解決很多數學問題的基礎,需要花費一定的時間對它進行記憶,一元二次方程的解法中,與其他方程的解法有區別的地方就是可以運用公式所以本節內容大家在學習過程中,03試題答案04試題文字版第2課時 用公式法解一元二次方程
  • 中考數學總複習:第8講《一元二次方程》考點梳理+題組分類剖析
    歡迎大家來到唐老師小課堂,今天已經是中考數學總複習的第八講了,謝謝大家的關注,雖然總體的效果並不是很好,但唐老師還是堅持用文章和視頻同時更新中考數學複習中的知識點和一些易錯點,講得不好的地方希望大家多提意見。
  • 【數學發現】一元二次方程求根公式
    人們從古埃及的數學紙草書和古巴比倫的數學泥版書上了解到,大約在距今三千七八百年以前,人類就會解一元一次方程。
  • 中考數學天天練之公式法求解一元二次方程練習題以及答案詳解
    走進2020年中考數學練習題之一元二次方程習題練習第二講本次課程我們主要來帶著大家練習一下如何使用公式法求解一元二次方程的根,通過這次課程學生要能靈活使用公式求解一元二次方程的根;習題目錄和分值題目分為四道大題,總共100分,分別為:一道選擇題
  • 中考數學專題複習:第8講一元二次方程及其應用
    >基本思想:化歸與轉化思想,一元二次方程的解法:直接開平方法、配方法、公式法、因式分解法,都是運用了「轉化」的思想,把待解決的問題(一元二次方程),通過轉化,歸結為已解決的問題(一元一次方程),也就是不斷地把「未知」轉化為「已知」.
  • 中考第一課堂,一元二次方程中的求根公式(中考必考題)
    一元二次方程 ,在中高考中是必考的題型,而且佔據大部分的分數。可以說是中考、高考的重點。甚至會在後面演變成更高次的方程的求解問題,但是不管幾次的方程,最終都要通過換元等方式,演變成一元二次方程來求解,所以無論是中考,或者是高考,一元二次方程的求解,是必須掌握的方程求解方式。
  • 九數上:公式法解一元二次方程,你學會了嗎?
    同學們大家好,我是老朋友小隴老師,上節內容,我們推送了人教版九年級數學用配方法解一元二次方程的知識內容,本節將繼續推送九年級數學用公式法解一元二次方程的知識詳解,還沒有掌握的同學務必要看看,相信會對你有很大的幫助。
  • 2019年中考數學分類彙編,一元二次方程的四個考點
    一元二次方程是在學習《一元一次方程》、《二元一次方程》、分式方程等基礎之上學習的,它也是一種數學建模的方法。學好一元二次方程是學好二次函數不可或缺的,是學好高中數學的基礎;應該說,一元二次方程是初中的重點,在2019年中考中,這四個知識點是考試的重點。
  • 數學專題——一元二次方程根的分布
    一元二次方程是初中數學中必學的內容,而且也是初中數學中的難點部分,在中考數學中所佔的比例也很大,因此學好一元二次方程極為重要。不僅如此,在歷年的高考試題中,一元二次方程總是以二次函數的形式出現,主要考查一元二次方程根的分布。基礎內容總結:
  • 中考數學第一輪複習6,一元二次方程考點梳理,明確複習方向
    一元二次方程是初中數學的重點和難點,在近幾年常以應用題和綜合題的形式出現,所佔分值5至10分。預計2019年將考察一元二次方程的解、根的判別式及應用,以此為工具和手段解決綜合問題,考查形式多樣;一次函數與反比例函數、二次函數圖象的交點問題也會涉及此內容。
  • 2021年初中八年級數學公式:解一元二次不等式
    中考網整理了關於2021年初中八年級數學公式:解一元二次不等式,希望對同學們有所幫助,僅供參考。   解一元二次不等式   首先化成一般式,構造函數第二站。   判別式值若非負,曲線橫軸有交點。   A正開口它向上,大於零則取兩邊。
  • 2021初中七年級代數知識點:一元二次方程的解法
    中考網整理了關於2021初中七年級代數知識點:一元二次方程的解法,希望對同學們有所幫助,僅供參考。   一元二次方程的解法 (10分)   1、直接開平方法   利用平方根的定義直接開平方求一元二次方程的解的方法叫做直接開平方法。直接開平方法適用於解形如 的一元二次方程。
  • 初中數學公式:方程不等式公式
    中考網整理了關於初中數學公式:方程不等式公式,希望對同學們有所幫助,僅供參考。   1、方程與方程組   一元一次方程:在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
  • 初中數學:一元二次方程基礎知識點
    初中數學:一元二次方程基礎知識點一元二次方程基本知識點一元二次方程知識框架一元二次方程的有關概念1. 一元二次方程的概念:通過化簡後,只含有一個未知數(一元),並且未知數的最高次數是2(二次)的整式方程,叫做一元二次方程。
  • 解一元二次方程的方法總結
    解一元二次方程的方法在前面的每個視頻裡面都已經講了,今天給大家總結一下解一元二次方程的方法:圖二圖二是解一元二次方程的第二種方法:配方法。此方法用途很頻繁,基本簡單的解一元二次方程的題目當中都能用到它,也很快捷。
  • 九年級上冊數學第一單元第一講一元一次方程和一元二次方程
    九年級數學上冊第一單元一元二次方程知識點講解及習題練習本次課程我們專門來講一下一元二次方程,為幫助大家很好掌握知識,咱們結合一元一次方程來進行相關的講解,回味舊知識,學好新內容!1 你要認識的概念長相特徵回憶舊知識:一元一次方程:含有一個未知數,未知數最高次數為1的等式為一元一次方程。例如:4x+4=0為關於x的一元一次方程。在舊知識的基礎上改進,學習新知識:一元二次方程:首先必須是等式,其次是含有一個未知數,再次未知數的最高次數必須為2,這個方程就是關於某個未知數的一元二次方程。