熱力學第二定律與熵(前語)

2021-02-08 神奇化學在哪裡

嚴格的熵的定義是由Carnot定理得出的。在Carnot定理中

一個可逆循環可以看成由無數個Carnot循環組成,則在這個可逆循環中

δ表示對非狀態函數的微分,R表示可逆(之後I表示不可逆),∮表示環路積分。

那麼對於可逆循環上的兩點A和B,可以分成A→B和B→A兩段,則

整理後得到

所以有狀態函數的性質。

Clausius定義了一個新的狀態函數稱為熵(entropy),用「S」表示,單位為J/K。

δ表示對非狀態函數的微分,R表示可逆(之後I表示不可逆)

entropy是Clausius在1865年創造的,「en」取自energy,「tropy」來自希臘文的轉變之意。1923年Plank來南京第四中央大學講學時,我國著名物理學家胡剛復教授擔任翻譯,首次創造了「熵」字,用以表示熱溫之商,表意貼切,沿用至今。(中華文化博大精深啊)

對於不可逆過程

由Carnot定理得到

於是推廣得到

設有下列的循環,系統經過可逆過程A→B和不可逆過程B→A,所以整個循環是不可逆的,於是

整理得到

綜合可逆與不可逆過程,得到了熱力學第二定律的數學表達式(Clausius不等式):


在絕熱系統中,由於沒有熱交換,δQ = 0,於是dS ≥ 0,等號表示可逆,不等號表示可逆。於是,在絕熱條件下,自發(即趨向於系統平衡)的過程使系統的熵增加。也可以說孤立系統(當然是絕熱的)的熵永不減小

相關焦點

  • 熱力學第二定律與熵(後話)
    ——Bertrand Russell隨著熱力學第二定律和熵增定律的提出,科學家認清一個可怕的事實。熱和功在熱力學第一定律中被成功統一,但在第二定律中又劃分出了清晰的界限。一方面熱和功的數量可以相同,但是「品質」並不相同。功轉化成熱是無條件的,而熱轉化成功是有條件的。
  • 熱力學第二定律的來源
    大家好,歡迎收看我的百家號小林看天下事,今天小編要給大家的介紹的是熱力學第二定律的來源。熱力學第二定律熱力學第二定律用物理學的語言告訴我們,沒有什麼是永恆的。它指出,可以做功的能量會越來越少,這一過程雖然緩慢,卻確實存在。
  • 熱力學三大定律與熵
    熱力學三大定律第一定律:能量是守恆的,可以互相轉化(比如機械能轉化為電能),而不會消失。天平的兩端相平衡;第二定律:然能量可以轉化,但是無法100%利用。在轉化過程中,總是有一部分能量會被浪費掉。考慮到宇宙的能量總和是一個常量,而每一次能量轉化,必然有一部分」有效能量」變成」無效能量」(即」熵」),因此不難推論,有效能量越來越少,無效能量越來越多。直到有一天,所有的有效能量都變成無效能量,那時將不再有任何能量轉化,這就叫宇宙的」熱寂」(Heat Death)。所以,熱力學第二定律的一個重要推論就是:熵永遠在增加。
  • 熱力學第二定律(熵增加原理)
    什麼是熱力學第二定律討論熵之前,我們還需要在知識上做一些準備,本文重點在於介紹熱力徐第二定律。
  • 「熵」究竟是個什麼東西?宇宙為何要遵守熱力學第二定律?
    然而科學家們發現,在這些規則中,有一條規則尤為重要,這就是著名的熱力學第二定律,也就是我們所謂的熵增定律!關於熵的問題,想必許多人都聽到過這個字,但卻不了解其中的意義,事實上,在物理學上,熵這個概念的形成也經歷了許多時間!熵是什麼?
  • 麥克斯韋妖:對抗熵與熱力學第二定律,最終歸於平常!
    熵和熵增原理,還有熱力學第二定律。沒有看過我之前文章的小夥伴沒有關係,我這裡簡單說一下。熵是體系混亂程度的度量。熵增原理:孤立熱力學系統下的熵不減少,總是增大或者不變。熱力學第二定律(兩種表述):熱量不能自發地從低溫物體轉移到高溫物體。/不可能從單一熱源取熱使之完全轉換為有用的功而不產生其他影響。
  • 進化與熱力學第二定律矛盾嗎?
    熱力學中的熵認為宇宙正在變壞,而進化論則認為宇宙正在變好,誰能解釋一下這個矛盾。很多人提出這個矛盾來試圖證明進化是不可能的。然而,提出這個想法的人是因為對熱力學第二定律的錯誤理解,實際上,進化論與任何已知的物理定律都沒有矛盾。
  • 熱力學第三定律與物質的規定熵
    熱力學第三定律是在很低的溫度下研究凝聚體系的熵變的實驗結果所推出的結論。它解決了如何通過實驗測求規定熵的問題。  熱力學第三定律有好幾種表述方法,這些表述方法字面上雖然各不相同,但其內容實質具有一定的聯繫和等效性。對熱力學第三定律的一種基本表述為:「不能用有限的手續把一個物體的溫度降到絕對零度」。
  • 熱力學第二定律是史上最大悖論?
    熱力學第二定律指出,宇宙將趨於高熵狀態。如果事實如此,那麼當宇宙中所有的物質處於混亂狀態時將會發生什麼?物質還如何守恆呢?讓我們從第二個問題入手。物理學家往往傾向於說能量是守恆的,而不是說物質守恆。在相對論中,我們可以將一個(物體或能量)轉換為另一個,在此過程中能量永遠守恆。
  • 《我對熱力學第二定律的看法》
    其實這個熱力學第二定律,到達的「熱寂」,我是不贊成這一理論的。宇宙無限循環,生生不息,怎麼會「熱寂」死亡呢?第二定律認為熱量從熱的地方流到冷的地方,對任何物理系統,這都是顯而易見的特性,毫無神秘之處。就最廣泛的意義而言,第二定律認為宇宙的「熵」與日俱增。
  • 熱力學第二定律被打破:打造永動機或成為可能
    (圖註:從最小原子的產生到遙遠黑洞的崩潰,一切都受熱力學定律的控制。熱力學第二定律從根本上為宇宙存在時間設定了極限,闡明了宇宙中的萬物為什麼終有一天會衰敗。)熱力學四大定律是我們宇宙的基本物理規則之一,19世紀中期由物理學家和工程師共同提出,他們希望這些定律有助於提高蒸汽機的效率。該定律解釋了溫度、能量和熵如何共同作用,創造和摧毀物質。宇宙中一切運動,從最小原子的產生到遙遠黑洞的崩潰,都受這四條定律的控制。熱力學第二定律解釋了系統內能量如何轉化,從有效能量轉化為無效能量。
  • 以熱力學定律的名義
    熱力學第二定律和哥德爾不完備定理、測不準原理和光的波粒二相性一起,成了人文學者最喜歡引用的四大「科學原理」。  但是高中物理並不介紹熱力學第二定律,許多經常把這一定律掛在嘴上的人,實際上並不理解它講的是什麼。
  • 熱學要點(三):熱力學第二定律
    既然一切宏觀過程都是不可逆的,那說明任何宏觀過程都有一個自發進行的方向,相反的方向不能自動進行,熱力學第二定律就是用來保證這一點的,有了它,人們不再陷入那種迷茫,例如:有沒可能熱自動的從低溫物體傳到高溫物體呢?
  • 熱力學熵:克勞修斯
    我們來簡單看一下玻爾茲曼熵表示的意義。假如有這麼一個箱子,裡面有黑白兩色小球。我們不妨設想兩種情況,一種是兩色小球很自覺地分別在箱子的左右兩半集合,另一種是兩色小球雜亂的分布在一起。很顯然,第二種情況允許的可能性更多一些,熵也就要大一些。但既然玻爾茲曼熵也是熵,那麼就一定和克勞修斯熵滿足同樣的熵增定律。
  • 思維模型30 - Second Law of Thermodynamics|熱力學第二定律
    我認為,熵增定律——熱力學第二定律——在自然界的定律中具有至高無上的地位。如果你的理論被發現違背了熱力學第二定律,你就一點希望都沒有,結局必然是徹底崩塌。熵這個概念的重要性上面三位都已經闡述得很明白了。其實,我在學習熱力學第二定律這個思維模型之前,從來沒覺得會有一個思維模型讓我把三觀給顛覆了。即使到現在,這個概念對我帶來的影響,真就像王興說的那樣,深刻的不寒而慄。
  • 熱力學熵:進化論
    但如果用熵的觀點來說,生物進化是個熵減小的過程。事實上,一個生命體的成長也正是進化之路的縮影,而這個過程仍然是熵減小的。聽起來似乎不對,因為熱力學第二定律告訴我們熵不會自發減小;那麼這是否意味著進化論和熱力學第二定律之間存在矛盾呢?
  • 熱力學第二定律,至今還有值得思考的地方,你認為呢?
    【克勞修斯表述】熱力學第二定律:不可能製成一種循環動作的熱機,從單一熱源取熱,使之完全變為功而不引起其它變化。【開爾文表述】熱力學第二定律:孤立系統的熵永不自動減少,熵在可逆過程中不變,在不可逆過程中增加。
  • 葉方富:時間的箭頭——熱力學第二定律【雲裡·悟理-第27課】
    我們甚至可以進一步推廣,實際上熱力學第二定律,除了這兩種描述以外,更深刻更廣泛地說,它說的就是,自然界裡一切涉及熱現象的宏觀過程 ,都是不可逆的。這裡面出現了一個新的概念,什麼叫不可逆,我們在說不可逆之前,先得界定一下,什麼叫做可逆。實際上我們在講可逆之前,又涉及到,另外一個概念叫做平衡態。
  • 新實驗「打破」熱力學第二定律,時間的箭頭不再絕對
    在熱力學的第二定律中,孤立系統內的熵(一個系統的無序程度)只增不減,比如一杯熱水在室溫下放一段時間後會變涼,但可能還沒有一杯涼水能自己在室溫下變熱。而正是這個相關性,造就了這一「違反」熱力學第二定律的現象。一般來說,熵是被用來表示一個系統最多可以處於多少種狀態的(在你觀察並確認系統處於某一特定狀態前)。而在一個經典系統中,系統的熵等於系統內每個分部的熵的總和。
  • 熱力學第三定律
    話說熱力學有四大定律。(What?竟然有四大定律,我怎麼只聽說過熱力學三大定律?)