2016年6月12日訊 /生物谷BIOON/ --近日,在一項發表在國際學術期刊The Journal of Molecular Diagnostics上的最新研究中,科學家們開發了一種檢測肺癌和結直腸癌中的KRAS基因突變的新技術。
發現並對腫瘤特異性基因變異進行功能分析為預測治療應答,幫助病人選擇有效的治療策略提供了可能性。正常的KRAS基因產物主要參與細胞分裂的調控,而許多癌症中都存在KRAS基因突變,到目前為止許多研究證明KRAS基因突變是預測非小細胞肺癌和結直腸癌病人治療敏感性的一個強力生物標記物。
研究人員表示,由於傳統的基因突變檢測方法需要複雜耗時的過程,同時還需要昂貴的儀器,因此並不適合進行KRAS突變的常規臨床篩查。為了克服這些問題,研究人員開發了這種能夠對肺癌和結直腸癌樣本進行常規檢測的新技術。
這項研究使用了雜交誘導聚合技術進行突變檢測,能夠在PCR擴增之後的不到十分鐘內檢測到常見KRAS突變。雜交誘導聚合技術是一種基於bead的DNA檢測技術,適用於微晶片平臺。
在這項研究中,研究人員對20個肺癌和結直腸癌樣本進行了分析,並將結果與傳統測序方法進行了對比,結果表明利用這項新技術篩查到的KRAS突變與測序結果100%吻合。除此之外,研究人員還報告稱在其中一個樣本中,即使在正常DNA背景下僅有25%的KRAS突變含量也能夠被檢測到。
這些結果表明這項基於雜交誘導聚合技術的突變檢測方法具有非常高的準確性,適用於真正的臨床檢測,並且研究人員還表示這項技術不僅能夠快速獲得結果,同時具有很高的性價比,因此該研究為個體化腫瘤治療策略的制定提供了一個有效的分析工具。(生物谷Bioon.com)
Hybridization-Induced Aggregation Technology for Practical Clinical Testing : KRAS Mutation Detection in Lung and Colorectal Tumors
Hillary S. Sloane, James P. Landers, Kimberly A. Kelly
KRAS mutations have emerged as powerful predictors of response to targeted therapies in the treatment of lung and colorectal cancers; thus, prospective KRAS genotyping is essential for appropriate treatment stratification. Conventional mutation testing technologies are not ideal for routine clinical screening, as they often involve complex, time-consuming processes and/or costly instrumentation. In response, we recently introduced a unique analytical strategy for revealing KRAS mutations, based on the allele-specific hybridization-induced aggregation (HIA) of oligonucleotide probe-conjugated microbeads. Using simple, inexpensive instrumentation, this approach allows for the detection of any common KRAS mutation in <10 minutes after PCR. Here, we evaluate the clinical utility of the HIA method for mutation detection (HIAMD). In the analysis of 20 lung and colon tumor pathology specimens, we observed a 100% correlation between the KRAS mutation statuses determined by HIAMD and sequencing. In addition, we were able to detect KRAS mutations in a background of 75% wild-type DNA-a finding consistent with that reported for sequencing. With this, we show that HIAMD allows for the rapid and cost-effective detection of KRAS mutations, without compromising analytical performance. These results indicate the validity of HIAMD as a mutation-testing technology suitable for practical clinical testing. Further expansion of this platform may involve the detection of mutations in other key oncogenic pathways.