【新技術】透視大腦!新型X射線顯微鏡技術全腦高解析度快速成像

2020-11-28 騰訊網

繪製出大腦所有神經元及其之間的連接,建立精確的大腦圖譜,一直以來是神經科學領域「戰略高地」。這種高解析度的單細胞水平的圖譜可在闡明大腦功能中實現「精準定位」。

電子顯微鏡具有納米級別的超高解析度,但是獲得即使很小的神經環路的三維圖像也需要收集數百萬張圖片,耗費大量的時間。光學顯微鏡成像速度快,但是空間解析度不高。

高能X射線(> 10 keV)由於其強大的穿透力和亞納米波長,因此在採集三維成像具有高時空解析度,滿足觀察神經亞細胞結構的需求。

2020年9月14日哈弗醫學院波士頓兒童醫院Wei-Chung Allen Lee研究團隊在Nature Neuroscience雜誌上發表文章開發出一種新的X射線全息納米斷層掃描(XNH)技術,在亞細胞結構水平上實現快速、大體積結構成像,加速繪製大腦神經環路圖譜。

XNH技術類似於CT斷層掃面,但與標準X射線成像不同。標準X射線成像依賴於光束穿過組織時X射線衰減的差異,而XNH技術根據樣品引起的光束細微相移的變化獲取圖像。此外XNH技術了提高了成像的靈敏度,有助於保護組織樣本免受X射線能量的損壞。

體素尺寸決定三維重構後圖像的解析度,體素尺寸越小,重構後圖像解析度越高,但並不意味著體素尺寸越小越好。研究人員通過計算模型測量出XNH成像技術體素尺寸在30-120納米之間,其解析度在87-222納米之間。

研究人員利用XNH技術對小鼠的皮層進行成像,能夠清晰看到線粒體、內質網、有髓軸突等亞細胞結構。先前的電鏡研究觀察到皮層錐體神經元的頂端樹突淺表皮層接收的抑制性突出輸入比深層皮層要多 ,但由於視野限制,每個樣本量僅限於20個神經元,這個顯然不滿足對複雜、密集神經元結構的成像。

為了能夠更清楚地獲得這些結構,研究人員將XNH技術和電鏡技術進行聯用,共採集3234個神經元形態學,據此揭示了樹突的獨特的結構學特點:距離皮層第2層神經元100微米內的抑制性突觸數量逐漸減少,表明抑制性突觸優勢和興奮性突觸的優勢之間的轉換在空間上「壓縮」了。

儘管XNH技術能夠在數小時內獲得大體積、高解析度的三維圖像,但是處理這些圖像則需要花費數月的時間,顯然這是不划算的。因此,他們基於人工智慧技術開發出針對XNH技術的圖像自動算法CNN,利用該算法可實現快速對密集神經元的形態重構,減少誤差。

神經元實現可視化有助於了解大腦的組織結構原理,不同的神經環路或網絡是如何參與到社會行為中去的。

總的來說,本文開發出一種新型X射線斷層掃描技術,彌補了電子顯微鏡體積小和光學顯微鏡低解析度的缺陷,繪製精密的大腦連接圖譜。

參考文獻:

1.https://medicalxpress.com/news/2020-09-x-ray-microscopy-technique-enables-comprehensive.html

相關焦點

  • 新X射線顯微鏡技術,幫助精確繪製大腦「地圖」
    大腦地圖(神經連接體)可協助研究人員闡明細胞集合是如何協同產生思想、記憶、行為以及其他功能的。美國哈佛醫學院、波士頓兒童醫院和歐洲同步輻射設備(ESRF)的研究團隊9月14日在《自然神經科學》雜誌發文稱,他們利用X射線全息納米斷層掃描技術(XNH)在高解析度下對小鼠大腦和果蠅神經組織進行了成像。這也許能加速神經迴路及大腦的繪製工作進程。
  • 新X射線顯微鏡技術助力大腦地圖精確繪製
    美國哈佛醫學院、波士頓兒童醫院和歐洲同步輻射設備(ESRF)的研究團隊9月14日在《自然神經科學》雜誌發文稱,他們利用X射線全息納米斷層掃描技術(XNH)在高解析度下對小鼠大腦和果蠅神經組織進行了成像。
  • NBT|新型光場顯微鏡高速記錄大腦神經元活動和血流的快速動態變化
    共聚焦顯微鏡和雙光子顯微鏡等運用於活體腦成像的傳統工具基於點掃描,時間解析度較低,難以研究大範圍腦區中神經元的快速變化。因此,近年來人們一直致力於開發更快的成像方法。在多種新技術中,光場顯微鏡尤其具有潛力,得到了廣泛關注。
  • 科學家設計新型X射線顯微鏡 對分子進行「幽靈成像」
    科學家設計新型X射線顯微鏡 對分子進行「幽靈成像」2020-11-25 10:34出處/作者:cnBeta.COM整合編輯:佚名責任編輯:lishiye1   美國布魯克海文國家實驗室(BNL)的工程師們設計了一種奇怪的新型X射線顯微鏡,它利用量子物理學的奇特世界,對生物分子進行高解析度的「幽靈成像」,但輻射劑量較低。
  • 量子X射線顯微鏡,即將問世!
    這是顯微鏡技術突破性的飛躍,實現使用少量的X射線,在不損傷敏感樣品的基礎上達到和現有一樣的高精確度透視。這項新研究的負責人之一麥克斯威尼(Sean McSweeney)說:「如果我們成功造出一個量子X射線顯微鏡,就能夠用很少量的X射線,完成高解析度的生物分子成像。
  • 蔡司推出半導體封裝失效分析的新型高解析度3D X射線成像解決方案
    蔡司X射線顯微系統包括:通過亞微米級和納米級高解析度成像對封裝產品進行失效分析的Xradia 600 Versa系列和 Xradia 800 Ultra X射線顯微鏡(XRM),以及Xradia Context microCT。隨著在現有產品基礎上新設備的研發推出,現如今,蔡司可以為半導體行業提供一系列3D X射線成像技術輔助生產。
  • 量子X射線顯微鏡即將問世
    美國能源部的布魯克黑文國家實驗室(BNL)開始建造使用量子特性改進的X射線顯微鏡。研究者表示,這是顯微鏡技術突破性的飛躍,實現使用少量的X射線,在不損傷敏感樣品的基礎上達到和現有一樣的高精確度透視。
  • 科學家設計新型X射線顯微鏡 利用量子糾纏對分子進行「幽靈成像...
    美國布魯克海文國家實驗室(BNL)的工程師們設計了一種奇怪的新型X射線顯微鏡,它利用量子物理學的奇特世界,對生物分子進行高解析度的「幽靈成像
  • 科學家設計新型X射線顯微鏡 利用量子糾纏對分子進行「幽靈成像」
    美國布魯克海文國家實驗室(BNL)的工程師們設計了一種奇怪的新型X射線顯微鏡,它利用量子物理學的奇特世界,對生物分子進行高解析度的「幽靈成像」,但輻射劑量較低。X射線顯微鏡是對樣品進行高解析度成像的有用工具,但其中涉及的輻射會損害敏感樣品,如病毒、細菌和一些細胞。降低輻射劑量是解決這一問題的一種方法,但不幸的是,這也降低了圖像的解析度。現在,布魯克海文國家實驗室的研究團隊已經找到了一種以較低輻射劑量保持較高解析度的方法--他們要做的就是利用量子物理學的奇特之處,這些奇特之處讓愛因斯坦等人摸不著頭腦。
  • 科學家利用超級計算技術實現更高解析度X射線成像
    科學家們正在通過一種計算技術來為下一代光源提高亮度和解析度做準備,該計算技術可以更快,更精確地重建圖像。X射線成像也是如此,儘管規模要小得多。位於美國能源部阿貢國家實驗室的美國能源部(DOE)用戶設施等高級光子源(APS)等光源,在使用高解析度X射線分析十億倍的X射線分析材料的小樣本方面表現出色。在您的牙醫辦公室生產的那些。
  • 利用X射線晶體學及冷凍電子顯微鏡成像技術確定大分子結構
    從X射線晶體學到冷凍電子顯微鏡的幾種不同的成像技術已成功地用於眾多大分子的結構表徵。圖片來源:Sergei Drozd / Shutterstock.com什麼是大分子?儘管多達80%的生物由小分子組成,包括無機離子,有機分子,主要是水,但生物的其餘部分則由大分子組成。大分子可以是蛋白質,多糖或遺傳物質(如脫氧核糖核酸(DNA))的形式。
  • 科學家:正在開發量子X射線顯微鏡
    因此,X射線顯微鏡會曝光膠片或使用電荷耦合器件(CCD)檢測器來檢測穿過樣品的X射線,是一種對比成像技術。X射線顯微成像技術在醫學、生物學、材料、安全檢測等領域得到廣泛的應用。美國布魯克黑文國家實驗室的科學家現在開始在國家同步加速器光源II(NSLS-II)上構建量子增強X射線顯微鏡。
  • 黑白X射線變彩色 醫學彩色成像讓醫學診斷向新技術邁進
    CERN的一份聲明說:「這種彩色X射線成像技術可以產生更清晰、更準確的圖像,幫助醫生給病人更準確的診斷。」 來自紐西蘭坎特伯雷大學(University of Canterbury)的開發者菲爾·巴特勒(Phil Butler)說:「這臺機器的小像素和精確的能量解析度意味著這個新的成像工具能夠獲得其他任何成像工具都無法實現的圖像」。
  • 抓拍腦細胞工作照:顯微鏡高速記錄大腦神經元活動和血流變化
    共聚焦顯微鏡和雙光子顯微鏡等運用於活體腦成像的傳統工具基於點掃描,時間解析度較低,難以研究大範圍腦區中神經元的快速變化。因此,近年來人們一直致力於開發更快的成像方法。在多種新技術中,光場顯微鏡尤其具有潛力,得到了廣泛關注。其特點在於可以在相機的單次曝光瞬間,記錄來自物體不同深度的信號,通過反卷積算法重構出整個三維體,實現快速體成像,在線蟲、斑馬魚幼魚等小型模式動物上已獲得初步應用。
  • 深圳大學X射線成像新技術獲突破
    日前,中國工程院院士、深圳大學光電工程學院院長牛憨笨向國家自然科學基金委員會副主任孫家廣等專家匯報了該院在X射線相襯成像技術領域的最新研究進展。
  • 自供電的X射線檢測器有望改變醫學成像技術現狀
    美國Los Alamos國家實驗室和Argonne國家實驗室的研究人員合作研發了一個新的X射線檢測器原型,可顯著減少輻射暴露和相關的健康風險,有望改變醫學成像技術的現狀,同時也提高了安全掃描儀和研究應用方面成像的解析度。
  • 新工具來了,可高速記錄大腦神經元活動和血流快速變化
    該研究發展了一種新型體成像技術:共聚焦光場顯微鏡,可以對活體動物深部腦組織中神經和血管網絡進行快速大範圍體成像。共聚焦顯微鏡和雙光子顯微鏡等運用於活體腦成像的傳統工具基於點掃描,時間解析度較低,難以研究大範圍腦區中神經元的快速變化。近年來,人們一直致力於開發更快的成像方法。在多種新技術中,光場顯微鏡尤其具有潛力,得到了廣泛關注。其特點在於可以在相機的單次曝光瞬間,記錄來自物體不同深度的信號,通過反卷積算法重構出整個三維體,實現快速體成像,在線蟲、斑馬魚幼魚等小型模式動物上已獲得初步應用。
  • 蔡司發布全新亞微米級X射線顯微鏡Xradia 600 Versa
    它們的獨特優勢是能夠在全功率和電壓範圍內更快速地對樣品進行無損成像,且不會影響解析度和對比度。在相對大工作距離下也能保持超高解析度,有助於產生意義非凡的科學見解和發現。隨著當今技術的快速發展,對分析儀器也提出了更高的要求,而蔡司Xradia 600 Versa系列就是專為應對這一挑戰而設計的。
  • 當LIGA技術與光柵法X射線 相襯成像相遇
    X射線相位襯度成像和傳統的X射線吸收成像相比,X射線相位襯度成像能夠為輕元素樣品提供高得多的襯度,特別適合用於對軟組織和輕元素構成的樣品進行成像。目前,主要的5類相襯成像方式中,大部分對光源的相干性要求極高,只能在同步輻射光源或者藉助微焦點X射線源實現。而光柵法相襯成像,經過十多年的發展,已經成為在實驗室實施相襯成像實驗的主流技術路線。
  • 科技:結合X射線和螢光顯微鏡揭示了看不見的分子細節
    導語:來自哥廷根大學的一個研究小組在DESY的X射線源PETRA III上委託了一個世界上獨特的顯微鏡組合,以獲得對生物細胞的新見解。由Tim Salditt和SarahKster領導的團隊在Nature Communications雜誌上描述了X射線和光學螢光顯微鏡的結合。