參考文獻:
[1]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide:sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359-E86.
[2]
Thun MJ, Delancey JO, Center MM, et al. The global burden of cancer:priorities for prevention[J]. Carcinogenesis, 2010, 31(1): 100-110.
[3]
Ciocan-Cartita CA, Jurj A, Buse M, et al. The relevance of mass spectrometry analysis for personalized medicine through its successful application in cancer "Omics"[J]. Int J Mol Sci, 2019, 20(10): E2576.
[4]
Belczacka I, Latosinska A, Metzger J, et al. Proteomics biomarkers for solid tumors:Current status and future prospects[J]. Mass Spectrom Rev, 2019, 38(1): 49-78.
[5]
Kowalczyk T, Ciborowski M, Kisluk J, et al. Mass spectrometry based proteomics and metabolomics in personalized oncology[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(5): 165690.
[6]
Li N, Zhan X. Mass spectrometry-based mitochondrial proteomics in human ovarian cancers[J]. Mass Spectrom Rev, 2020.
[7]
Calderon-Celis F, Encinar JR, Sanz-Medel A. Standardization approaches in absolute quantitative proteomics with mass spectrometry[J]. Mass Spectrom Rev, 2018, 37(6): 715-737.
[8]
Neagu AN. Proteome imaging:from classic to modern mass spectrometry-based molecular histology[J]. Adv Exp Med Biol, 2019, 1140: 55-98.
[9]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34.
[10]
Dai L, Qu Y, Li J, et al. Serological proteome analysis approach-based identification of ENO1 as a tumor-associated antigen and its autoantibody could enhance the sensitivity of CEA and CYFRA 21-1 in the detection of non-small cell lung cancer[J]. Oncotarget, 2017, 8(22): 36664-36673.
[11]
Jin Y, Yang Y, Su Y, et al. Identification a novel clinical biomarker in early diagnosis of human non-small cell lung cancer[J]. Glycoconj J, 2019, 36(1): 57-68.
[12]
Bohnenberger H, Kaderali L, Strobel P, et al. Comparative proteomics reveals a diagnostic signature for pulmonary head-and-neck cancer metastasis[J]. EMBO Mol Med, 2018, 10(9): e8428.
[13]
Wang K, Li H, Chen R, et al. Combination of CALR and PDIA3 is a potential prognostic biomarker for non-small cell lung cancer[J]. Oncotarget, 2017, 8(57): 96945-96957.
[14]
Bottger F, Schaaij-Visser TB, de Reus I, et al. Proteome analysis of nonsmall cell lung cancer cell line secretomes and patient sputum reveals biofluid biomarker candidates for cisplatin response prediction[J]. J Proteomics, 2019, 196: 106-119.
[15]
Sung HJ, Ahn JM, Yoon YH, et al. Quiescin sulfhydryl oxidase 1(qsox1) secreted by lung cancer cells promotes cancer metastasis[J]. Int J Mol Sci, 2018, 19(10): E3213.
[16]
Parsons J, Francavilla C. 'Omics approaches to explore the breast cancer landscape[J]. Front Cell Dev Biol, 2019, 22(7): 395.
[17]
Tyanova S, Albrechtsen R, Kronqvist P, et al. Proteomic maps of breast cancer subtypes[J]. Nat Commun, 2016, 7: 10259.
[18]
Valo I, Raro P, Boissard A, et al. OLFM4 expression in ductal carcinoma in situ and in invasive breast cancer cohorts by a SWATH-based proteomic approach[J]. Proteomics, 2019, 19(21-22): e1800446.
[19]
Pedersen MH, Hood BL, Ehmsen S, et al. CYPOR is a novel and independent prognostic biomarker of recurrence-free survival in triplenegative breast cancer patients[J]. Int J Cancer, 2019, 144(3): 631-640.
[20]
Zeng L, Deng X, Zhong J, et al. Prognostic value of biomarkers EpCAM and alphaB-crystallin associated with lymphatic metastasis in breast cancer by iTRAQ analysis[J]. BMC Cancer, 2019, 19(1): 831.
[21]
Westbrook JA, Cairns DA, Peng J, et al. CAPG and GIPC1:breast cancer biomarkers for bone metastasis development and treatment[J]. J Natl Cancer Inst, 2016, 108: 4.
[22]
Westbrook JA, Wood SL, Cairns DA, et al. Identification and validation of DOCK4 as a potential biomarker for risk of bone metastasis development in patients with early breast cancer[J]. J Pathol, 2019, 247(3): 381-391.
[23]
de Boer HR, Pool M, Joosten E, et al. Quantitative proteomics analysis identifies MUC1 as an effect sensor of EGFR inhibition[J]. Oncogene, 2019, 38(9): 1477-1488.
[24]
Pellegrino M, Rizza P, Dona A, et al. FoxO3a as a positive prognostic marker and a therapeutic target in tamoxifen-resistant breast cancer[J]. Cancers(Basel), 2019, 11: 12.
[25]
Alves Martins BA, De Bulhoes GF, Cavalcanti IN, et al. Biomarkers in colorectal cancer:the role of translational proteomics research[J]. Front Oncol, 2019, 9: 1284.
[26]
Yu J, Zhai X, Li X, et al. Identification of MST1 as a potential early detection biomarker for colorectal cancer through a proteomic approach[J]. Sci Rep, 2017, 7(1): 14265.
[27]
Duan B, Bai J, Qiu J, et al. Histone-lysine N-methyltransferase SETD7 is a potential serum biomarker for colorectal cancer patients[J]. EBioMedicine, 2018, 37: 134-143.
[28]
Bhardwaj M, Gies A, Weigl K, et al. Evaluation and validation of plasma proteins using two different protein detection methods for early detection of colorectal cancer[J]. Cancers (Basel), 2019, 25(11): 10.
[29]
Mori K, Toiyama Y, Otake K, et al. Successful identification of a predictive biomarker for lymph node metastasis in colorectal cancer using a proteomic approach[J]. Oncotarget, 2017, 8(63): 106935-106947.
[30]
Mori K, Toiyama Y, Otake K, et al. Proteomics analysis of differential protein expression identifies heat shock protein 47 as a predictive marker for lymph node metastasis in patients with colorectal cancer[J]. Int J Cancer, 2017, 140(6): 1425-1435.
[31]
Kirana C, Peng L, Miller R, et al. Combination of laser microdissection, 2D-DIGE and MALDI-TOF MS to identify protein biomarkers to predict colorectal cancer spread[J]. Clin Proteomics, 2019, 22(16): 3.
[32]
Guo J, Zhu C, Yang K, et al. Poly(C)-binding protein 1 mediates drug resistance in colorectal cancer[J]. Oncotarget, 2017, 8(8): 13312-13319.
[33]
Lee YS, Ko E, Yoon EL, et al. Multiplexed proteomic approach for identification of serum biomarkers in hepatocellular carcinoma patients with normal AFP[J]. J Clin Med, 2020, 23(9): 2.
[34]
Zhan Z, Guan Y, Mew K, et al. Urine alpha-fetoprotein and orosomucoid 1 as biomarkers of hepatitis B virus-associated hepatocellular carcinoma[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(2): G305-G312.
[35]
Gao Q, Zhu H, Dong L, et al. Integrated proteogenomic characterization of hbv-related hepatocellular carcinoma[J]. Cell, 2019, 179(2): 561-577.
[36]
Hindupur SK, Colombi M, Fuhs SR, et al. The protein histidine phosphatase LHPP is a tumour suppressor[J]. Nature, 2018, 555(7698): 678-682.
[37]
Jiang Y, Sun A, Zhao Y, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma[J]. Nature, 2019, 567(7747): 257-261.
[38]
Kim H, Yu SJ, Yeo I, et al. prediction of response to sorafenib in hepatocellular carcinoma:a putative marker panel by multiple reaction monitoring-mass spectrometry(MRM-MS)[J]. Mol Cell Proteomics, 2017, 16(7): 1312-1323.
[39]
Le Large TYS, Meijer LL, Paleckyte R, et al. Combined expression of plasma thrombospondin-2 and CA19-9 for diagnosis of pancreatic cancer and distal cholangiocarcinoma:a proteome approach[J]. Oncologist, 2020, 25(4): e634-e643.
[40]
Yoneyama T, Ohtsuki S, Honda K, et al. Identification of IGFBP2 and IGFBP3 as compensatory biomarkers for CA19-9 in early-stage pancreatic cancer using a combination of antibody-based and LC-MS/MSbased proteomics[J]. PLoS One, 2016, 11(8): e0161009.
[41]
Qi Y, Zhang Y, Peng Z, et al. SERPINH1 overexpression in clear cell renal cell carcinoma:association with poor clinical outcome and its potential as a novel prognostic marker[J]. J Cell Mol Med, 2018, 22(2): 1224-1235.
[42]
Yang T, Xu P, Gu L, et al. Quantitative assessment of serum heat shock protein 27 for the diagnosis of epithelial ovarian cancer using targeted proteomics coupled with immunoaffinity enrichment[J]. Clin Chim Acta, 2019, 489: 96-102.
[43]
Farrokhi Yekta R, Arefi Oskouie A, Rezaei Tavirani M, et al. Decreased apolipoprotein A4 and increased complement component 3 as potential markers for papillary thyroid carcinoma:A proteomic study[J]. Int J Biol Markers, 2018, 33(4): 455-462.
[44]
Aleckovic M, Wei Y, Leroy G, et al. Identification of nidogen 1 as a lung metastasis protein through secretome analysis[J]. Genes Dev, 2017, 31(14): 1439-1455.