作者:蘭永昊(北京積水潭醫院)
韓偉 (首都醫科大學附屬北京安貞醫院)
劉巍 (首都醫科大學附屬北京安貞醫院)
內容簡介
基礎篇(上篇):
1.引言
2.文獻回顧
3.準分子雷射作用機制
4.操作人員控制
5.適應證
技術篇(下篇):
6.推薦的技術
7.導管特性
8.消蝕範圍
9.雷射成功的定義
10.安全性/併發症
11.血管內成像指導
12.現代ELCA文獻匯總及未來方向
13.結論
接上文:
06
技術推薦
雷射能量的脈衝應該緩慢傳輸,雷射導管推送大約0.5 mm/s,以允許足夠的吸收和消蝕[17]。ELCA與冠脈旋磨術的主要區別在於:穿過病變不是主要目的,而是軟化斑塊,通過「坐」在病變上消蝕後從而更好地擴張球囊,特別是在球囊或ELCA導管本身無法通過的情況下。另一方面,如果導管推進得太快,組織沒有時間吸收光能,消蝕將是次優的。當導管被收回時,同樣的原理也適用於ELCA。有3種方法可以實施ELCA(圖2),如下:
(1)雷射加生理鹽水灌注
使用說明書(IFU)推薦鹽水灌注技術,因為它允許雷射從導管尖端通過到組織,而不會干擾到微泡形成,從而不會導致因增加光機械功所帶來的夾層風險[19, 56]。一旦血管造影證實系統內的造影劑被清除,先輸注5ml生理鹽水,並在ELCA應用過程中以1ml/s的速度持續輸注。
(2)不含生理鹽水(血液)的雷射
血液中含有非水的細胞大分子-蛋白質,它們將吸收大部分傳遞的準分子雷射能量,並在能量傳遞的地方形成微泡。雖然這一特性可能會增加光-機械效能,但也會增加創傷性夾層的風險。我們認為血液作為一種介質,其光-機械效能低於對比劑,但高於生理鹽水。在CTO操作中通常應避免順行注射,以防止解剖平面傳播。在這些情況下,ELCA通常不需要生理鹽水輸注,使用血液作為介質[32]。曾有文獻報導了在內膜下間隙內成功使用ELCA的情況[57]。
(3)雷射加對比劑
ELCA同時注射造影劑進行激活,可以從微泡產生強大的聲學-機械效應,從而增加冠狀動脈內的鈣化的破壞力。這反過來又使得血管更易球囊擴張,從而更好的支架擴張釋放[25]。ELEMENT註冊研究顯示:ELCA使用對比劑是可行的,並改善了支架擴張程度[24]。然而,由於夾層和穿孔的風險,這項技術應該小心謹慎使用,而使用0.9 mm導管能將冠狀動脈內氣泡形成的風險降到最低[24, 25]。另一個要考慮的因素是使用稀釋的對比劑,如50%的對比劑和50%的生理鹽水,以限制破壞力,從而減少夾層和穿孔的風險以及微空洞的形成。
07
導管特性
ELCA導管包含一個長30mm的單軌段,與0.014英寸冠脈指引導絲兼容。導管尺寸包括0.9mm、1.4mm、1.7mm和2.0mm。既有單軌導管,也有經導絲(OTW)導管。對於PCI,通常使用0.9和1.4mm導管型號(表1)。導管大小選擇在很大程度上取決於狹窄嚴重程度、參考血管直徑和狹窄病變特點。例如,CTO介入大多數需要0.9mm,而支架擴張不良或支架內再狹窄(ISR)可應用1.4mm的導管。然而,與0.9mm導管相比,使用1.4mm導管進行造影劑注射時需要謹慎,因為形成微空腔的可能性更高。偏心導管如今已經很少用於冠狀動脈介入術,通常用於較大血管直徑的偏心病變或需要廣泛斑塊消蝕的ISR病變。
08
消蝕範圍
雷射啟動後,在導管尖端周圍會形成微泡,並向前移動(圖2)。需要注意的是,通過病變並不是首要目標,而是通過非常緩慢地向前(或向後)移動或甚至「坐」在病變上來軟化斑塊,尤其是在導管不能通過病變的情況下。雷射消蝕完成後,檢查是否存在穿孔或夾層非常重要(表3)。
09
雷射成功的定義
不同的研究對ELCA成功的定義不同。這些術語包括技術成功(接受ELCA治療,可能包括發生併發症的患者)、血管造影成功(改善TIMI血流及心肌灌注分級,也可能包括發生併發症的患者)和臨床/手術成功(通常定義為<50%殘餘狹窄和無併發症)等術語。
在1992-2018年評價的45項研究中,臨床/手術成功率範圍為33%[58]到100%[29,59,60]不等,中位數為91%,成功率隨時間推移總體改善。然而在現代,比較ELCA與其他手術方式的試驗寥寥無幾。
10
安全性/併發症
ELCA可以並發冠狀動脈穿孔、夾層、慢血流/無複流、側支丟失和遠端栓塞。雖然在任何能量和頻率設置下都可能出現這種情況,但能量和頻率越高,風險就越高。對於自身血管,建議從較低的設置開始,例如30(能量)/20(頻率),使用1.4mm導管及生理鹽水輸注。另一方面,對於ISR從最高設置開始是合理的,例如,根據血管大小,使用0.9mm導管的80/80或1.4mm導管的60/40,最初使用生理鹽水輸注,如果考慮對自身血管損害的可能性較低,也可以在需要時進行稀釋造影劑輸注。
併發症發生率已逐年下降,從20世紀90年代的33%[61]下降到當今的3.5%[7]。這一改善可歸功於技術改進,例如導管輸送技術的改進、導管尺寸有更多選擇、血管/患者適應證選擇以及操作者的經驗提升(例如起始時能量和脈衝的選擇,鹽水、血液及造影劑輸注技術等)。然而,必須注意潛在的併發症,如以遞增方式使用較大導管時穿孔率更高[62]。根據文獻得出平均併發症發生率如下:穿孔0.76%、慢血流/無複流1.49%、嚴重夾層6.9%、輕微夾層8.8%、再狹窄4.6%、血栓0.5%、側支閉塞0.28%和遠端栓塞1.48%。需要注意的是,這些發生率並沒有隨技術進步而改善。
11
血管內成像指導
冠狀動脈內成像在了解病變的潛在機制中起關鍵作用,有助於指導進行最佳斑塊消蝕。ELCA常用於復發性ISR病變,血管中已經植入1-2層支架的患者。這些患者通常被轉診到三級醫療中心進行血管內放射治療。在這種情況下,為了實現支架完全擴張以及消蝕纖維脂肪斑塊,通常首先進行ELCA以增加與纖維脂肪斑塊以及支架鋼梁外鈣化的接觸並進行消蝕,隨後進行球囊擴張,再進行血管內放射治療以防止內膜過度增生。但是,關鍵是儘量了解潛在的ISR機制,以便利用所需的技術實現最佳的血管和支架擴張。
圖4顯示了ELCA在支架內CTO病變中的成功應用,球囊血管成形術和ELCA後,支架完全擴張。圖5和圖6顯示在ISR中成功使用ELCA,有助於球囊血管成形術以及支架充分擴張。理想情況下,在ELCA前後可以通過任何一種腔內影像進行成像,以評價支架後方的鈣化、擴張不良的支架、潛在的斑塊特徵以及評估支架和血管直徑[25]。當ELCA用於治療潛在血栓性病變時,血管內成像在了解殘餘血栓負荷等方面有一定重要性。在STEMI人群中進行的一項研究表明,殘餘血栓與更差的微血管功能障礙和更大的心肌損傷相關[63]。
12
現代ELCA文獻匯總及未來方向
隨著PCI治療複雜冠脈技術經驗的增長,對ELCA使用的興趣也日益增加。2014年發表的Element登記註冊研究,評估了使用ELCA聯用造影劑注射技術來擴張膨脹不良的支架,結果顯示最小支架面積顯著增加,平均管腔面積從3.5±1.1mm²擴張到7.1±1.9mm²,併發症發生率與以前的研究相當[24]。2019年Lee等進一步證明了這一點。使用ELCA與更多的鈣化斷裂(61%vs.12%)、更大的最終最小管腔面積(4.76mm² vs. 3.46mm²,p<0.01)和更大的既往植入支架面積(6.15mm² vs. 4.65mm²,p<0.01)有關。
2015年的LEONARDO研究證實,使用ELCA可成功治療93.7%患者的複雜鈣化病變(雷射成功),併發症發生率為0%[34]。2017年的ULTRAMAN研究表明,ELCA在日本的主要適應證為ISR(32.4%)和ACS(53.4%)[32]。2017年Veerasamy等證實,通過逐步增加能量方法,所有支架擴張不足、膨脹不全的病例均成功擴張支架,且無併發症報導[64]。2018年的LAVA登記研究描述了ELCA在退伍軍人醫療中心在當代使用情況及結局。ELCA最常見的適應證是球囊無法通過病變(43.8%),其次是球囊無法擴張病變(40.8%)和血栓性病變(12.3%),技術成功率較高(90.0%),主要不良心臟事件發生率較低(3.45%)[7]。
Ichimoto等在2018年報告稱,與未使用ELCA的患者相比,使用DESELCA治療ISR的患者在平均29.8±11.6個月內的不良結局無差異[65]。2018年發表的PROGRESS-CTOs登記研究的一項子研究報告,雷射在球囊擴張不良的CTOs中的使用率為21%(2017年為17%[66]),而高壓球囊的使用率為64%,旋磨術為31%,切割球囊為15%[67]。Kinnaird等2016年報告稱,與未使用ELCA相比,在英國登記研究的所有患者中使用ELCA與冠狀動脈穿孔無關(0.2%vs1%,p<0.001)[68]。然而,Danek等2017年證實,在PROGRESS-CTO登記研究的CTO人群中,使用ELCA的冠狀動脈穿孔率較高,為7%,未使用ELCA的冠狀動脈穿孔率為2%,p<0.009[69]。
隨著複雜PCI領域的成熟,ELCA的地位很可能會鞏固。目前的ELCA應用的趨勢是大部分使用於ISR、球囊不能通過和不可擴張的病變或CTO病變及某些鈣化病變。隨著操作者技術的改進和適應證選擇的優化,ELCA使用相關的併發症發生率可能在未來進一步降低。
造影劑注射技術可以追溯到1993年,雖然早期常並發嚴重夾層和穿孔[12],但越來越多的報告使用造影劑進行成功的ELCA並無併發症發生。然而,使用造影劑注射技術在提高有效性同時要保持非常低的併發症發生率,這一方面還需要進一步的工作來明確患者和病變的適應證。
Ichimoto等在2018年的研究中評價了使用或不使用ELCA的PCI的5年結局,結果顯示ELCA與管腔增益相關,但主要不良心臟事件無差異[65]。隨著我們的經驗增長,還需要更多的研究以評價ELCA使用的長期結果。此外,隨著血管內碎石術在世界範圍內的進一步普及,對上述病變的兩種治療方式進行比較也非常重要。
結 論
ELCA是一種有效的斑塊消蝕器械,具有獨特的優勢。在複雜PCI數量不斷增加的年代,術者應熟悉ELCA的正確適應證並掌握其技術,同時了解其作用機制。這不僅使現代介入心臟病學家的武器裝備更完善,而且能夠使術者在適合雷射斑塊旋切術或其他斑塊旋切術的病變識別中做出正確選擇,從而進一步優化雷射斑塊旋切術相關結局及預後。
參考文獻:
[1] Choy DS. History of lasers in medicine. Thorac Cardiovasc Surg. 1988; 36(Suppl. 2): 114-7.
[2] Cook SL, Eigler NL, Shefer A, et al. Percutaneous excimer laser coronary angioplasty of lesions not ideal for balloon angioplasty. Circulation. 1991; 84: 632-43.
[3] Koster R, Kahler J, Brockhoff C, et al. Laser coronary angioplasty: history, present and future. Am J Cardiovasc Drugs. 2002; 2: 197-207.
[4] Bittl JA, Sanborn TA, Tcheng JE, et al. Clinical success, complications and restenosis rates with excimer laser coronary angioplasty. The Percutaneous Excimer Laser Coronary Angioplasty Registry. Am J Cardiol. 1992; 70: 1533-9.
[5] Geschwind HJ, Dubois-Rande JL, Zelinsky R, et al. Percutaneous coronary mid-infra-red laser angioplasty. Am Heart J. 1991; 122: 552-8.
[6] Kirtane AJ, Doshi D, Leon MB, et al. Treatment of higher-risk patients with an indication for revascularization: evolution within the field of contemporary percutaneous coronary intervention. Circulation. 2016; 134: 422-31.
[7] Karacsonyi J, Armstrong EJ, Truong HTD, et al. Contemporary use of laser during percutaneous coronary interventions: insights from the laser veterans affairs (LAVA) multicenter registry. J Invasive Cardiol. 2018; 30: 195-201.
[8] Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010; 8: 336-41.
[9] Estella P, Ryan Jr TJ, Landzberg JS, Bittl JA. Excimer laser-assisted coronary angioplasty for lesions containing thrombus. J Am Coll Cardiol. 1993; 21: 1550-6.
[10] Litvack F, Grundfest WS, Goldenberg T, et al. Pulsed laser angioplasty: wavelength power and energy dependencies relevant to clinical application. Lasers Surg Med. 1988; 8: 60-5.
[11] Nakabayashi K, Sunaga D, Kaneko N, et al. Simple percutaneous coronary interventions using the modification of complex coronary lesion with excimer laser. Cardiovasc Revasc Med. 2019; 20: 293-302.
[12] van Leeuwen TG, Meertens JH, Velema E, et al. Intraluminal vapor bubble induced by excimer laser pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit. Circulation. 1993; 87: 1258-63.
[13] Biamino G. The excimer laser: science fiction fantasy or practical tool? J Endovasc Ther. 2004; 11(Suppl. 2): II207-22.
[14] Topaz O. A new, safer lasing technique for laser-facilitated coronary angioplasty. J Interv Cardiol. 1993; 6: 297-306.
[15] Esenaliev RO, Oraevsky AA, Letokhov VS, et al. Studies of acoustical and shock waves in the pulsed laser ablation of biotissue. Lasers Surg Med. 1993; 13: 470-84.
[16] Coronary Atherectomy and Transradial Access Part I of III: Laser Atherectomy. 2016. (Accessed 11/27/18, 2018, at https://www.cathlabdigest.com/article/Coronary -Atherectomy-Transradial-Access-Part-I-III-Laser-Atherectomy.)
[17] Rawlins J, Din JN, Talwar S, O』Kane P. Coronary intervention with the excimer laser: review of the technology and outcome data. Interv Cardiol. 2016; 11: 27-32.
[18] Badr S, Ben-Dor I, Dvir D, et al. The state of the excimer laser for coronary intervention in the drug-eluting stent era. Cardiovasc Revasc Med. 2013; 14: 93-8.
[19] Tcheng JE, Wells LD, Phillips HR, et al. Development of a new technique for reducing pressure pulse generation during 308-nm excimer laser coronary angioplasty. Cathet Cardiovasc Diagn. 1995; 34: 15-22.
[20] Papaioannou T, Yadegar D, Vari S, et al. Excimer laser (308 nm) recanalisation of in-stent restenosis: thermal considerations. Lasers Med Sci. 2001; 16: 90-100.
[21] Burris N, Lippincott RA, Elfe A, et al. Effects of 308 nanometer excimer laser energy on 316 L stainless-steel stents: implications for laser atherectomy of in-stent restenosis. J Invasive Cardiol. 2000; 12: 555-9.
[22] Sunew J, Chandwaney RH, Stein DW, et al. Excimer laser facilitated percutaneous coronary intervention of a nondilatable coronary stent. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interventions. 2001; 53: 513-7 [discussion 8].
[23] Lam SC, Bertog S, Sievert H. Excimer laser in management of under expansion of a newly deployed coronary stent. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interventions. 2014; 83: E64-8.
[24] Latib A, Takagi K, Chizzola G, et al. Excimer Laser Lesion modification to expand nondilatable stents: the ELLEMENT registry. Cardiovasc Revasc Med. 2014; 15: 8-12.
[25] Karacsonyi J, Danek BA, Karatasakis A, et al. Laser coronary atherectomy during contrast injection for treating an underexpanded stent. JACC Cardiovasc Interv. 2016; 9: e147-8.
[26] Egred M. A novel approach for under-expanded stent: excimer laser in contrast medium. J Invasive Cardiol. 2012; 24: E161-3.
[27] Mehran R, Mintz GS, Satler LF, et al. Treatment of in-stent restenosis with excimer laser coronary angioplasty: mechanisms and results compared with PTCA alone. Circulation. 1997; 96: 2183-9.
[28] Dahm JB, Kuon E, Vogelgesang D, et al. Relation of degree of laser debulking of instent restenosis as a predictor of restenosis rate. Am J Cardiol. 2002; 90: 68-70.
[29] Nishino M, Lee Y, Nakamura D, et al. Differences in optical coherence tomographic findings and clinical outcomes between excimer laser and cutting balloon angioplasty for focal in-stent restenosis lesions. J Invasive Cardiol. 2012; 24: 478-83.
[30] Rawlins J, Talwar S, Green M, O』Kane P. Optical coherence tomography following percutaneous coronary intervention with excimer laser coronary atherectomy. Cardiovasc Revasc Med. 2014; 15: 29-34.
[31] Dahm JB. Excimer laser coronary angioplasty (ELCA) for diffuse in-stent restenosis: beneficial long-term results after sufficient debulking with a lesion-specific approach using various laser catheters. Lasers Med Sci. 2001; 16: 84-9.
[32] Nishino M, Mori N, Takiuchi S, et al. Indications and outcomes of excimer laser coronary atherectomy: efficacy and safety for thrombotic lesions-the ULTRAMAN registry. J Cardiol. 2017; 69: 314-9.
[33] Shishikura D, Otsuji S, Takiuchi S, et al. Vaporizing thrombus with excimer laser before coronary stenting improves myocardial reperfusion in acute coronary syndrome. Circ J. 2013; 77: 1445-52.
[34] Ambrosini V, Sorropago G, Laurenzano E, et al. Early outcome of high energy laser (excimer) facilitated coronary angioplasty ON hARD and complex calcified and balloon-resistant coronary lesions: LEONARDO study. Cardiovasc Revasc Med. 2015; 16: 141-6.
[35] Baim DS, Kent KM, King 3rd SB, et al. Evaluating new devices. Acute (in-hospital) results from the new approaches to coronary intervention registry. Circulation. 1994; 89: 471-81.
[36] Baumbach A, Bittl JA, Fleck E, et al. Acute complications of excimer laser coronary angioplasty: a detailed analysis of multicenter results. Coinvestigators of the U.S. and European Percutaneous Excimer Laser Coronary Angioplasty (PELCA) registries. J Am Coll Cardiol. 1994; 23: 1305-13.
[37] Safian RD, Freed M, Reddy V, et al. Do excimer laser angioplasty and rotational atherectomy facilitate balloon angioplasty? Implications for lesion-specific coronary intervention. J Am Coll Cardiol. 1996; 27: 552-9.
[38] Reifart N, Vandormael M, Krajcar M, et al. Randomized comparison of angioplasty of complex coronary lesions at a single center. Excimer Laser, Rotational Atherectomy, and Balloon Angioplasty Comparison (ERBAC) study. Circulation. 1997; 96: 91-8.
[39] Giri S, Ito S, Lansky AJ, et al. Clinical and angiographic outcome in the laser angioplasty for restenotic stents (LARS) multicenter registry. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography &Interventions. 2001; 52: 24-34.
[40] Bilodeau L, Fretz EB, Taeymans Y, et al. Novel use of a highenergy excimer laser catheter for calcified and complex coronary artery lesions. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interventions. 2004; 62: 155-61.
[41] Dorr M, Vogelgesang D, Hummel A, et al. Excimer laser thrombus elimination for prevention of distal embolization and no-reflow in patients with acute ST elevation myocardial infarction: results from the randomized LaserAMI study. Int J Cardiol. 2007; 116: 20-6.
[42] Lee T, Shlofmitz RA, Song L, et al. The effectiveness of excimer laser angioplasty to treat coronary in-stent restenosis with peri-stent calcium as assessed by optical coherence tomography. EuroIntervention: Journal of EuroPCR in Collaboration With the Working Group on Interventional Cardiology of the European Society of Cardiology. 2019; 15: e279-88.
[43] Fernandez JP, Hobson AR, McKenzie D, et al. Beyond the balloon: excimer coronary laser atherectomy used alone or in combination with rotational atherectomy in the treatment of chronic total occlusions, non-crossable and non-expansible coronary lesions. EuroIntervention: Journal of EuroPCR in Collaboration With the Working Group on Interventional Cardiology of the European Society of Cardiology. 2013; 9: 243-50.
[44] Holmes Jr DR, Forrester JS, Litvack F, et al. Chronic total obstruction and short-term outcome: the Excimer Laser Coronary Angioplasty Registry experience. Mayo Clin Proc. 1993; 68: 5-10.
[45] Topaz O, Ebersole D, Das T, et al. Excimer laser angioplasty in acute myocardial infarction (the CARMEL multicenter trial). Am J Cardiol. 2004; 93: 694-701.
[46] Bilodeau J. Jean Bilodeau: pioneer in home respiratory care. Interview by Suzanne Blanchet. Infirm Que. 1995; 2: 24-6.
[47] Dahm JB, Topaz O, Woenckhaus C, et al. Laser-facilitated thrombectomy: a new therapeutic option for treatment of thrombus-laden coronary lesions. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interventions. 2002; 56: 365-72.
[48] Topaz O, Minisi AJ, Morris C, et al. Photoacoustic fibrinolysis: pulsed-wave, mid-infrared laser-clot interaction. J Thromb Thrombolysis. 1996; 3: 209-14.
[49] Topaz O, Bernardo NL, Shah R, et al. Effectiveness of excimer laser coronary angioplasty in acute myocardial infarction or in unstable angina pectoris. Am J Cardiol. 2001; 87: 849-55.
[50] Bittl JA, Sanborn TA, Yardley DE, et al. Predictors of outcome of percutaneous excimer laser coronary angioplasty of saphenous vein bypass graft lesions. The Percutaneous Excimer Laser Coronary Angioplasty Registry. Am J Cardiol. 1994; 74: 144-8.
[51] Webb JG, Carere RG, Virmani R, et al. Retrieval and analysis of particulate debris after saphenous vein graft intervention. J Am Coll Cardiol. 1999; 34: 468-75.
[52] Baim DS, Wahr D, George B, et al. Randomized trial of a distal embolic protection device during percutaneous intervention of saphenous vein aorto-coronary bypass grafts. Circulation. 2002; 105: 1285-90.
[53] Niccoli G, Belloni F, Cosentino N, et al. Case-control registry of excimer laser coronary angioplasty versus distal protection devices in patients with acute coronary syndromes due to saphenous vein graft disease. Am J Cardiol. 2013; 112: 1586-91.
[54] Giugliano GR, Falcone MW, Mego D, et al. A prospective multicenter registry of laser therapy for degenerated saphenous vein graft stenosis: the Coronary graft Results following Atherectomy with Laser (CORAL) trial. Cardiovasc Revasc Med. 2012; 13: 84-9.
[55] Ebersole D, Dahm JB, Das T, et al. Excimer laser revascularization of saphenous vein grafts in acute myocardial infarction. J Invasive Cardiol. 2004; 16: 177-80.
[56] Deckelbaum LI, Natarajan MK, Bittl JA, et al. Effect of intracoronary saline infusion on dissection during excimer laser coronary angioplasty: a randomized trial. The Percutaneous Excimer Laser Coronary Angioplasty (PELCA) investigators. J Am Coll Cardiol. 1995; 26: 1264-9.
[57] Don C, Kalyanasundaram A, Lombardi W. TCT-209 subintimal laser atherectomy for chronic total occlusion revascularization. J Am Coll Cardiol. 2014; 64: B61-2.
[58] Chatelain P, Meier B, de la Serna F, et al. Success with coronary angioplasty as seen at demonstrations of procedure. Lancet. 1992; 340: 1202-5.
[59] Liu M, Chow WH, Kwok OH, et al. Treatment of in-stent coronary restenosis with excimer laser angioplasty. Chin Med J (Engl). 2000; 113: 14-7.
[60] Kuntz RE, Safian RD, Levine MJ, et al. Novel approach to the analysis of restenosis after the use of three new coronary devices. J Am Coll Cardiol. 1992; 19: 1493-9.
[61] Chatelain P, Meier B, Delaserna F, et al. Success with coronary angioplasty as seen at demonstrations of procedure. Lancet. 1992; 340: 1202-5.
[62] Litvack F, Eigler N, Margolis J, et al. Percutaneous excimer laser coronary angioplasty: results in the first consecutive 3,000 patients. The ELCA investigators. J Am Coll Cardiol. 1994; 23: 323-9.
[63] Higuma T, Soeda T, Yamada M, et al. Does residual thrombus after aspiration thrombectomy affect the outcome of primary PCI in patients with ST-segment elevation myocardial infarction? an optical coherence tomography study. JACC Cardiovasc Interv. 2016; 9: 2002-11.
[64] Veerasamy M, Gamal AS, Jabbar A, et al. Excimer laser with and without contrast for the management of under-expanded stents. J Invasive Cardiol. 2017; 29: 364-9.
[65] Ichimoto E, Kadohira T, Nakayama T, De Gregorio J. Long-term clinical outcomes after treatment with excimer laser coronary atherectomy for in-stent restenosis of drug-eluting stent. Int Heart J. 2018; 59: 14-20.
[66] Karacsonyi J, Karmpaliotis D, Alaswad K, et al. Prevalence, indications and management of balloon uncrossable chronic total occlusions: insights from a contemporary multicenter US registry. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interventions. 2017; 90: 12-20.
[67] Tajti P, Karmpaliotis D, Alaswad K, et al. Prevalence, presentation and treatment of 『balloon undilatable』 chronic total occlusions: insights from a multicenter US registry. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interventions. 2018; 91: 657-66.
[68] Kinnaird T, Kwok CS, Kontopantelis E, et al. Incidence, determinants, and outcomes of coronary perforation during percutaneous coronary intervention in the United Kingdom between 2006 and 2013: an analysis of 527 121 cases from the British Cardiovascular Intervention Society Database. Circ Cardiovasc Interv. 2016: 9.
[69] Danek BA, Karatasakis A, Tajti P, et al. Incidence, treatment, and outcomes of coronary perforation during chronic total occlusion percutaneous coronary intervention. Am J Cardiol. 2017; 120: 1285-92.
作者簡介
蘭永昊
• 北京積水潭醫院心內科 主治醫師
• 首都醫科大學附屬北京安貞醫院 在讀博士
作者簡介
韓 偉
專家簡介
劉巍教授
首都醫科大學附屬北京安貞醫院心內科主任醫師,副教授,碩士生導師,博士,先後在新加坡國立大學Tan Tock Seng醫院,日本東邦大學大森醫院心血管介入中心,美國休斯頓德州醫學中心Methodist醫院Debacky心血管中心及德州大學醫學部接受心內科及心血管介入培訓
擅長冠心病診治,結構性心臟介入治療
目前擔任歐洲心臟病學會委員,美國心臟協會委員,中華醫學會心血管分會冠心病與動脈粥樣硬化學組委員,北京醫學會心血管分會青委會副主任委員,中國醫師協會心血管分會青年委員