結合核小體的SWI/SNF染色質重塑複合物RSC結構獲解析

2020-12-05 科學網

結合核小體的SWI/SNF染色質重塑複合物RSC結構獲解析

作者:

小柯機器人

發布時間:2020/3/22 21:09:13

德國馬克斯普朗克生物物理化學研究所Patrick Cramer課題組取得一項新進展。他們的最新工作揭示了SWI/SNF染色質重塑複合物RSC與核小體結合後的結構。2020年3月11日,《自然》雜誌在線發表了這項成果。

研究人員報導了與核小體底物結合的RSC冷凍電鏡結構。該結構揭示RSC形成五個蛋白質模塊,並提示了重塑機制的關鍵特徵。主體模塊充當了四個可變模塊的支架,即DNA相互作用模塊、ATP酶模塊、手臂模塊和肌動蛋白相關蛋白(ARP)模塊。DNA相互作用模塊結合核外DNA,並參與識別影響RSC功能的啟動子DNA元件。ATP酶和手臂模塊分別將帶有Snf2 ATP偶聯(SnAC)結構域和指螺旋的核小體夾在中間。ATP酶模塊的轉位酶馬達在超螺旋位置+2處與核小體的邊緣接合。移動式ARP模塊可能調節轉位酶與核小體的相互作用,從而調節RSC活性。RSC核小體結構為了解NDR的形成以及人類SWI/SNF複合物的結構和功能提供了基礎,並且SWI/SNF複合物在癌症中經常發生突變。

 

據介紹,SWI/SNF家族的染色質重塑複合物工作於核小體減少、轉錄活躍的啟動子區域(NDR)。在釀酒酵母中,生存必需的SWI/SNF複合物RSC包含16個亞基,包括ATP依賴的DNA轉位酶Sth1。RSC從啟動子區域去除核小體,並將專門的+1和-1核小體定位於NDR兩側。

 

附:英文原文

Title: Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome

Author: Felix R. Wagner, Christian Dienemann, Haibo Wang, Alexandra Sttzer, Dimitry Tegunov, Henning Urlaub, Patrick Cramer

Issue&Volume: 2020-03-11

Abstract: Chromatin-remodelling complexes of the SWI/SNF family function in the formation of nucleosome-depleted, transcriptionally active promoter regions (NDRs). In the yeast Saccharomyces cerevisiae, the essential SWI/SNF complex RSC contains 16 subunits, including the ATP-dependent DNA translocase Sth1. RSC removes nucleosomes from promoter regions and positions the specialized +1 and -1 nucleosomes that flank NDRs. Here we present the cryo-electron microscopy structure of RSC in complex with a nucleosome substrate. The structure reveals that RSC forms five protein modules and suggests key features of the remodelling mechanism. The body module serves as a scaffold for the four flexible modules that we call DNA-interacting, ATPase, arm and actin-related protein (ARP) modules. The DNA-interacting module binds extra-nucleosomal DNA and is involved in the recognition of promoter DNA elements that influence RSC functionality. The ATPase and arm modules sandwich the nucleosome disc with the Snf2 ATP-coupling (SnAC) domain and the finger helix, respectively. The translocase motor of the ATPase module engages with the edge of the nucleosome at superhelical location +2. The mobile ARP module may modulate translocase–nucleosome interactions to regulate RSC activity. The RSC–nucleosome structure provides a basis for understanding NDR formation and the structure and function of human SWI/SNF complexes that are frequently mutated in cancer.

DOI: 10.1038/s41586-020-2088-0

Source: https://www.nature.com/articles/s41586-020-2088-0

相關焦點

  • ...陳柱成課題組在《科學》合作發表長文闡述RSC複合物重塑染色質...
    清華大學生命學院陳柱成課題組在《科學》合作發表長文闡述RSC複合物重塑染色質的機理清華新聞網11月1日電 11月1日,清華大學生命學院陳柱成、北京大學生命學院高寧與美國猶他大學Bradley Cairns課題組在《科學》(Science)期刊上在線發表題為「核小體結合狀態的染色質重塑複合物RSC的結構
  • 中國科大在染色質重塑SWI/SNF與INO80複合體結構研究中取得重要進展
    中國科學技術大學蔡剛教授課題組利用冷凍電鏡技術,解析了染色質重塑SWI/SNF與INO80複合體及其不同核小體結合狀態複合物的三維結構,揭示了SWI/SNF與INO80複合體共有的肌動蛋白(Actin)和核肌動蛋白相關蛋白(Arps)組成的Actin/Arp模塊作為構象調控的分子開關,調控核小體結合及可能調節重塑核小體活性的分子機制,相關研究成果近日分別在國際權威雜誌《Protein
  • 近期系列染色質重塑複合物相關重大成果
    染色質重塑複合物利用ATP的能量移動核小體在基因組上的位置和組成成分,在控制染色質結構、調節基因轉錄等方面具有重大作用。根據結構和功能的特點,染色質重塑複合物可以分四大類:SWI/SNF、CHD、ISWI和INO80【1】。這些分子機器的運行機理,即如何利用ATP水解的能量推動核小體移動和組蛋白交換,一直是一個未解的科學問題。
  • 兩篇Nature首次重建出染色質重塑蛋白-核小體的三維結構
    這正是染色質重塑蛋白(chromatin remodeler, 也譯作染色質重塑劑)發揮作用的時候。染色質重塑蛋白發揮著至關重要的作用:它們通過在核小體上來回地滑動來拆開DNA片段,替換單個組蛋白,讓DNA片段釋放出來用於轉錄,並且最終在轉錄完成時再次壓縮它。
  • 新研究揭示染色質重塑新機制—新聞—科學網
    近日,復旦大學生物醫學研究院研究員徐彥輝課題組解析了人源染色質重塑複合物BAF結合核小體的冷凍電鏡結構,對染色質重塑機制和
  • 清華陳柱成研究組發文闡述「模擬開關」染色質重塑蛋白的結構與...
    該研究通過X-射線晶體衍射的手段,解析了嗜熱酵母的染色質重塑蛋白ISWI (imitation switch, 模擬開關)及其與組蛋白H4複合物的原子解析度結構;結合相應的生化實驗,揭示了「模擬開關」 蛋白的自抑制、被底物識別和激活以及感知接頭DNA長度,進而發揮染色質組裝功能的分子機理。
  • 染色質重塑機制新理解!《科學》主刊發表復旦大學新成果!
    該成果報導了人源染色質重塑複合物BAF結合核小體的冷凍電鏡結構,對染色質重塑機制和BAF高頻突變致癌機制的理解起到重要推動作用。該成果報導了人源染色質重塑複合物BAF結合核小體的冷凍電鏡結構,對染色質重塑機制和BAF高頻突變致癌機制的理解起到重要推動作用。作為真核生物遺傳物質的載體,染色質結構高度緻密,這種緻密結構有利於機體更加有效的儲存遺傳物質,同時也對基本生命活動的正常進行設置了屏障。因此,染色質的動態調控與基因表達以及基因損傷修復等密切相關。
  • de novo DNA甲基轉移酶和天然底物核小體的高解析度結構首次獲解析
  • 生命學院陳柱成、李雪明等合作在《自然》發文報導染色質重塑發生...
    該工作解析了不同核苷酸狀態下Snf2-核小體複合物的冷凍電鏡結構,揭示了染色質重塑的機理。SWI/SNF家族蛋白利用ATP水解產生的能量移動核小體在基因組DNA的位置,重塑染色質。這對於控制遺傳物質的開放性,調節基因轉錄等方面發揮重要作用。陳柱成實驗室近期報導了Snf2與核小體結合的結構 (Liu, Nature 2017),但這個早期的工作並沒有明確檢測到DNA移位。
  • 我國科學家發現植物SWI/SNF染色體重塑複合物的新亞基
    Nature Plants | 中山大學李陳龍課題組發現植物SWI/SNF染色體重塑複合物的新亞基來源:BAP BioArt植物 SWI/SNF染色質重塑複合體通過利用ATP水解所產生的能量改變染色質的結構來調節基因轉錄。SWI/SNF染色質重塑複合體在酵母,哺乳動物和植物中都相當保守。
  • SMARCB1突變影響mSWI/SNF複合物介導的染色質重塑
    SMARCB1突變影響mSWI/SNF複合物介導的染色質重塑 作者:小柯機器人 發布時間:2019/11/21 13:06:20 美國哈佛醫學院Cigall Kadoch團隊近期通過研究SMARCB1突變揭示出一個核小體酸性模塊相互作用位點
  • 李陳龍團隊發現植物SWI/SNF染色體重塑複合物的新亞基
    SWI/SNF染色質重塑複合體通過利用ATP水解所產生的能量改變染色質的結構來調節基因轉錄。SWI/SNF染色質重塑複合體在酵母,哺乳動物和植物中都相當保守。酵母的SWI/SNF主要由8-14個亞基組成,而動物中的SWI/SNF複合體則由29個基因編碼組裝而成。
  • 土傳病原真菌染色質重塑抵禦寄主ROS脅迫研究獲進展
    近日,中國科學院微生物研究所研究員郭惠珊在PLOS PATHOGENS 在線發表了題為Verticillium dahliae chromatin remodeling facilitates the DNA damage repair in response to plant ROS stress 的研究論文,發現了土傳病原真菌通過染色質重塑應對寄主活性氧物質
  • 首次解析de novo DNA甲基轉移酶和天然底物核小體的高解析度結構
    DNA甲基化可改變染色質結構、DNA穩定性及DNA與蛋白質等相互作用,從而控制基因表達。DNA甲基化可隨DNA的複製過程遺傳給新生的子代DNA,是一種重要的表觀遺傳機制。在染色質環境中,DNA甲基化比在溶液中複雜得多,核小體作為遺傳物質的組成單位,包裹在其外圍的DNA更加難以被甲基化。然而,大多數核小體結合的de novo DNA甲基轉移酶處於非激活狀態。
  • 微生物所在土傳病原真菌染色質重塑抵禦寄主ROS脅迫研究中獲進展
    在酵母和動植物中發現,染色質重塑複合物通過調節染色質上核小體的分布、染色質的結構以及控制基因的表達等方式來影響細胞的生長發育,並參與DNA修復的調控。病原菌染色質重塑複合物是否應答寄主產生的ROS修復DNA的損傷尚不清楚。
  • 研究解析de novo DNA甲基轉移酶和天然底物核小體的高解析度結構
    DNA甲基化可改變染色質結構、DNA穩定性及DNA與蛋白質等相互作用,從而控制基因表達。DNA甲基化可隨DNA的複製過程遺傳給新生的子代DNA,是一種重要的表觀遺傳機制。在染色質環境中,DNA甲基化比在溶液中複雜得多,核小體作為遺傳物質的組成單位,包裹在其外圍的DNA更加難以被甲基化。然而,大多數核小體結合的de novo DNA甲基轉移酶處於非激活狀態。
  • 上海生科院揭示組蛋白分子伴侶DAXX和染色質重塑蛋白ATRX相互作用...
    近日,中國科學院上海生命科學研究院生物化學與細胞生物學研究所陳勇研究組的最新研究成果,以Structural basis for DAXX interaction with ATRX為題,發表在Protein & Cell上,該成果揭示了組蛋白分子伴侶DAXX蛋白與染色質重塑蛋白
  • 微生物所郭惠珊研究組報導土傳病原真菌染色質重塑抵禦寄主ROS脅迫...
    在酵母和動植物中發現,染色質重塑複合物通過調節染色質上核小體的分布、染色質的結構以及控制基因的表達等方式來影響細胞的生長發育,並參與DNA修復的調控。病原菌染色質重塑複合物是否應答寄主產生的ROS修復DNA的損傷尚不清楚。
  • 染色質著絲粒區核小體組裝結構機理研究獲進展
    該項工作對染色質著絲粒區核小體組裝的結構機理開展了深入系統的研究:染色質著絲粒區的核小體有著特殊的組成,其中含有組蛋白H3的變異體CENP-A是重要標誌,而組蛋白伴侶HJURP對CENP-A在著絲粒上的定位以及核小體組裝至關重要。該成果解析了HJURP與CENP-A以及組蛋白H4複合體的三維晶體結構。
  • 研究揭示H2A.Z染色質組裝的新機制
    該研究揭示了SWR複合物亞基Swc5特異性識別組蛋白H2A-H2B並調控組蛋白H2A.Z進行染色質組裝的分子機制。H2A.Z是組蛋白H2A的一類變體。酵母及哺乳動物細胞中的H2A.Z具有高度保守的序列,並且在基因轉錄、DNA複製、基因組穩定性維持等過程中發揮重要作用。H2A.Z通過精確定位於基因組的特定位點來改變染色質結構並實現其功能。