染色質著絲粒區核小體組裝結構機理研究獲進展

2021-01-17 科學網

 

5月1日,中國科學院生物物理研究所生物大分子國家重點實驗室許瑞明課題組在《基因與發育》(Genes & Development)雜誌上發表了題目為「Structure of a CENP-A-histone H4 heterodimer in Complex with chaperone HJURP」的文章。

 

該項工作對染色質著絲粒區核小體組裝的結構機理開展了深入系統的研究:染色質著絲粒區的核小體有著特殊的組成,其中含有組蛋白H3的變異體CENP-A是重要標誌,而組蛋白伴侶HJURP對CENP-A在著絲粒上的定位以及核小體組裝至關重要。該成果解析了HJURP與CENP-A以及組蛋白H4複合體的三維晶體結構。這項工作揭示了HJURP促使CENP-A-H4二聚體的形成及其防止組蛋白與DNA非特異性結合的結構基礎,並發現了決定HJURP特異性識別CENP-A的關鍵胺基酸基團。

 

該成果2011年4月8日在線發表後,美國NIH/NCI的Yamini Dalal博士於4月12日在Faculty of 1000上配發評述說,該研究成果揭示出的HJURP特異性識別CENP-A68位上的絲氨酸將成為日後相關工作的一個焦點。該文章的F1000因子為高等級的10分。

 

這項工作是與生物物理研究所李國紅課題組以及中國科學技術大學的姚雪彪和施蘊渝課題組合作完成的。

 

該項研究工作得到科技部、國家自然科學基金委員會和中國科學院的資助。(來源:中科院生物物理研究所)

 

 

 

 

 

特別聲明:本文轉載僅僅是出於傳播信息的需要,並不意味著代表本網站觀點或證實其內容的真實性;如其他媒體、網站或個人從本網站轉載使用,須保留本網站註明的「來源」,並自負版權等法律責任;作者如果不希望被轉載或者聯繫轉載稿費等事宜,請與我們接洽。

相關焦點

  • 中國科大在染色質重塑SWI/SNF與INO80複合體結構研究中取得重要進展
    中國科學技術大學蔡剛教授課題組利用冷凍電鏡技術,解析了染色質重塑SWI/SNF與INO80複合體及其不同核小體結合狀態複合物的三維結構,揭示了SWI/SNF與INO80複合體共有的肌動蛋白(Actin)和核肌動蛋白相關蛋白(Arps)組成的Actin/Arp模塊作為構象調控的分子開關,調控核小體結合及可能調節重塑核小體活性的分子機制,相關研究成果近日分別在國際權威雜誌《Protein
  • 結合核小體的SWI/SNF染色質重塑複合物RSC結構獲解析
    結合核小體的SWI/SNF染色質重塑複合物RSC結構獲解析 作者:小柯機器人 發布時間:2020/3/22 21:09:13 德國馬克斯普朗克生物物理化學研究所Patrick Cramer課題組取得一項新進展
  • 研究揭示H2A.Z染色質組裝的新機制
    該研究揭示了SWR複合物亞基Swc5特異性識別組蛋白H2A-H2B並調控組蛋白H2A.Z進行染色質組裝的分子機制。H2A.Z是組蛋白H2A的一類變體。酵母及哺乳動物細胞中的H2A.Z具有高度保守的序列,並且在基因轉錄、DNA複製、基因組穩定性維持等過程中發揮重要作用。H2A.Z通過精確定位於基因組的特定位點來改變染色質結構並實現其功能。
  • 科學網—30納米染色質高級結構成功解析
    近30年來,由於缺乏系統、合適的研究手段,作為染色質包裝過程中承上啟下的關鍵部分,30納米染色質高級結構研究一直是現代分子生物學領域面臨的最大挑戰之一。 科學家已經發現,染色質包裝分4步完成,對應了染色質的四級結構:第一級結構是核小體;第二級結構是核小體螺旋化形成30納米染色質纖維;第三級結構是30納米染色質再摺疊成更為複雜的染色質高級結構,即超螺旋體;第四級結構是超螺旋體進一步摺疊形成在光學顯微鏡下可以看到的染色體。
  • EMBO J | 開放核小體導致染色質鬆散的分子機制
    核小體結構非常穩定,對DNA組成和組蛋白修飾的改變均不敏感。組蛋白變體可以改變核小體和染色質結構調控基因轉錄,迄今為止測定的所有單核小體結構中,構象改變最大的CENP-A核小體就是組蛋白H3變體核小體,結構顯示CENP-A核小體包含的DNA為121bp,但其蛋白核心結構變化不大。
  • 研究揭示組蛋白H2A泛素化修飾對核小體的調控機制
    真核細胞基因組DNA被組裝形成染色質存儲在細胞核中。核小體,作為染色質的基本結構單元,在基因複製與轉錄過程中高度動態調控。DNA/RNA聚合酶前的核小體結構要被打開,使得聚合酶能順利通過核小體,對核小體包裹的DNA進行複製轉錄;而聚合酶通過後的DNA要被重新組裝形成核小體,保護DNA免受損傷,並維持或繼承該區域表觀遺傳信息。
  • 遺傳發育所小麥著絲粒組成及其進化研究獲新進展
    遺傳發育所小麥著絲粒組成及其進化研究獲新進展 2019-07-23 遺傳與發育生物學研究所 大多數植物著絲粒結構複雜,主要是由高度重複的衛星DNA以及中間穿插的反轉座子序列(CR)組成,其中著絲粒衛星序列單元長度主要集中在150-180 bp之間,例如水稻CentO和玉米CentC序列,多年前已經發現並用於著絲粒結構與功能研究。普通小麥是重要的糧食作物,經過兩次遠緣雜交和多倍化過程,是染色體組進化及多倍體二倍化研究的模式材料。
  • 清華陳柱成研究組發文闡述「模擬開關」染色質重塑蛋白的結構與...
    清華陳柱成研究組發文闡述「模擬開關」染色質重塑蛋白的結構與調控機理清華新聞網12月8日電 12月6日,清華大學生命學院陳柱成研究組在《自然》(Nature)雜誌發表題為「模擬開關染色質重塑蛋白的結構與調控」(Structure and regulation of the chromatin remodeler ISWI
  • ...陳柱成課題組在《科學》合作發表長文闡述RSC複合物重塑染色質...
    清華大學生命學院陳柱成課題組在《科學》合作發表長文闡述RSC複合物重塑染色質的機理清華新聞網11月1日電 11月1日,清華大學生命學院陳柱成、北京大學生命學院高寧與美國猶他大學Bradley Cairns課題組在《科學》(Science)期刊上在線發表題為「核小體結合狀態的染色質重塑複合物RSC的結構
  • 30-nm染色質纖維結構及其動態調控的分子機制
    國家傑出青年基金獲得者、中組部萬人計劃創新領軍人才、中科院「百人計劃」入選者、HHMI國際研究學者。1995年武漢大學病毒系本科畢業,2003年於德國海德堡大學獲得博士學位。先後在美國新澤西醫科大學和紐約大學醫學院霍華德休斯醫學研究所(HMMI)從事博士後研究。2010年全職回到中科院生物物理所生物大分子國家重點實驗室工作。
  • 土傳病原真菌染色質重塑抵禦寄主ROS脅迫研究獲進展
    ,發現了土傳病原真菌通過染色質重塑應對寄主活性氧物質(ROS)的脅迫,修復ROS造成的真菌DNA損傷。在酵母和動植物中發現,染色質重塑複合物通過調節染色質上核小體的分布、染色質的結構以及控制基因的表達等方式來影響細胞的生長發育,並參與DNA修復的調控。病原菌染色質重塑複合物是否應答寄主產生的ROS修復DNA的損傷尚不清楚。
  • 組蛋白變體嵌入形成結構和功能各異的核小體
    來自中科院生物物理研究所、中國科學院大學和美國Mayo診所的研究人員近日在新研究中揭示了組蛋白變異體H3.3–H4異源二聚體與伴侶蛋白DAXX構成的複合物的結構
  • 單分子力譜定量解析泛素修飾對基因調控研究獲進展
    人類基因組包含大約31.6億個DNA鹼基對,線性DNA分子作為龐大遺傳信息的載體一般都比較長(人類一條染色體的DNA長度約為2米),生命通過組蛋白將DNA分子有序組織壓縮形成微米級別的染色質存儲到細胞核中。核小體是染色質的結構和功能的最基本單元,其中DNA纏繞在組蛋白巴聚體周圍約兩圈,完成對DNA的第一次組裝壓縮。
  • 近期系列染色質重塑複合物相關重大成果
    染色質重塑複合物利用ATP的能量移動核小體在基因組上的位置和組成成分,在控制染色質結構、調節基因轉錄等方面具有重大作用。根據結構和功能的特點,染色質重塑複合物可以分四大類:SWI/SNF、CHD、ISWI和INO80【1】。這些分子機器的運行機理,即如何利用ATP水解的能量推動核小體移動和組蛋白交換,一直是一個未解的科學問題。
  • 生物物理所30nM染色質高級結構解析取得重要突破
    生物物理所長期從事冷凍電鏡三維結構研究的朱平研究員和長期從事30nm染色質及表觀遺傳調控研究的李國紅研究員通過多年的緊密合作和不懈努力,發揮各自專長和優勢,成功建立了一套染色質體外重建和結構分析平臺,利用一種冷凍電鏡單顆粒三維重構技術在國際上率先解析了30nm染色質的高清晰三維結構,在破解「生命信息」的載體——30nm染色質的高級結構研究中取得了重要突破。
  • 兩篇Nature首次重建出染色質重塑蛋白-核小體的三維結構
    這正是染色質重塑蛋白(chromatin remodeler, 也譯作染色質重塑劑)發揮作用的時候。染色質重塑蛋白發揮著至關重要的作用:它們通過在核小體上來回地滑動來拆開DNA片段,替換單個組蛋白,讓DNA片段釋放出來用於轉錄,並且最終在轉錄完成時再次壓縮它。
  • 新研究揭示染色質重塑新機制—新聞—科學網
    近日,復旦大學生物醫學研究院研究員徐彥輝課題組解析了人源染色質重塑複合物BAF結合核小體的冷凍電鏡結構,對染色質重塑機制和
  • 微生物所在土傳病原真菌染色質重塑抵禦寄主ROS脅迫研究中獲進展
    在酵母和動植物中發現,染色質重塑複合物通過調節染色質上核小體的分布、染色質的結構以及控制基因的表達等方式來影響細胞的生長發育,並參與DNA修復的調控。脅迫應答和致病性調控;VdDpb4和VdIsw2在大麗輪枝菌細胞核中互作並共同調控染色質的結構。
  • 核小體是構成染色質的基本,使得染色質中DN成為緻密的結構形式
    核小體是構成染色質的基本結構單位,使得染色質中DNA、RNA和蛋白質組織成為一種緻密的結構形式。核小體由核心顆粒(core particle)和連接區DNA(linker DNA)二部分組成,在電鏡下可見其成捻珠狀,前者包括組蛋白H2A,H2B,H3和H4各兩分子構成的緻密八聚體(又稱核心組蛋白),以及纏繞其上一又四分之三圈長度為146bp的DNA鏈;後者包括兩相鄰核心顆粒間約60bp的連接DNA和位於連接區DNA上的組蛋白H1(圖15-12),連接區使染色質纖維獲得彈性。
  • 組蛋白變體介導表觀遺傳調控研究獲進展
    中科院上海生命科學研究院植生生態所植物分子遺傳國家重點實驗室方玉達研究組通過研究,發現了組蛋白變體H3.3分子中決定其嵌入核小體和從核小體上解離的信號胺基酸