日科學家成功研製出三維光子晶體 光埋入能力提高4倍

2021-01-16 OFweek光通訊網

  日本東京大學量子情報研究機構野村政宏(NOMURA,Masahiro)等人,近日開發出高性能的「三維光子晶體」。該晶體預料將會是實現下一代高速計算時的重要組件材料。由於精密設計的形狀,光埋入性能提高為以往的四倍。除了有利於計算機的高速、省電計算處理外,也期望可應用作為防竊聽的「量子密碼」光源。

  三維光子晶體,是可將光粒封在內部的半導體晶體。在埋入以其他半導體材料製作的小球狀物,也可同時聚集電子。此種晶體外部受到光線照射時,晶體內的光和電子會重複地交互作用,使光放大增加,進而產生效率極佳的雷射。與以往的半導體雷射器相比,組件中產生的光能以1000倍左右的高效率提取。

  研究團隊以電子顯微鏡確認,將細刻如梳子齒狀般、厚度200納米的半導體板堆棧25層,即可製作成長寬約10微米的三維光子晶體。


東京大學研製出三維光子晶體的結構
 

  目前的課題是晶體中會漏出微弱的光,但因為半導體板多層堆棧之故,讓光仍然得以立體地圍繞在一起。

  晶體中多數的光粒子經過長時間埋入,能提高晶體發光的性能。在光通訊使用的、波長1.3微米的光埋入實驗中,研究了晶體的質量。藉助「Q值」,得知性能提高到以往的四倍。

  研究團隊分析認為「晶體的質量必須達到能正確產生雷射的等級」。嘗試以調整自外部照射進來的光等改良方式,並以實際光源的機能進行考慮。


圖2 顯示的效果完全抑制物質排放的三維光子晶體。 (A) 5層堆疊晶體和( B ) 9層堆疊

  在新技術的基礎下,將來得以代替大規模集成電路晶片的電力配線,以光傳送數據等應用方式而備受期待。計算機的信號處理可望達到高速、省電的境界。(編輯:於佔濤)
 

相關焦點

  • 科學家製造出兼具電學光學高性能的光子晶體
    據美國物理學家組織網7月24日報導,美國科學家研發出了一種新方法,改變了半導體的三維結構,使其在保持電學特性的同時擁有了新的光學性質,並據此研製出了首塊光學電學性能都很活躍的新型光子晶體,為以後研製出新式太陽能電池、雷射器、超材料等打開了大門。研究發表在最新一期《自然·材料學》雜誌上。
  • 北航研製的光子晶體光纖陀螺首飛成功
    7/7/2017,2017年4月,北京航空航天大學儀器科學與光電工程學院光電技術研究所研製的高精度光子晶體光纖陀螺實現了在「天舟一號」貨運飛船上首次搭載飛行,獲圓滿成功,這是國際上光子晶體光纖陀螺的首次空間應用,驗證了光子晶體光纖陀螺作為新一代光學陀螺的技術可行性。
  • 飛秒雷射加工三維非線性光子晶體研究獲進展
    中國科學院材料力學行為和設計重點實驗室吳東教授課題組與南京大學固體微結構國家重點實驗室張勇、肖敏課題組以及胡小鵬、祝世寧課題組合作,利用飛秒雷射電疇擦除技術首次成功製備出三維非線性光子晶體,並實現了三維準相位匹配的雷射倍頻。
  • 光子晶體
    這使得進一步提高晶片的性能也變得極為困難。即存在量子極限的限制。如何進一步提高晶片的性能呢?這時,人們想到了光子。光子不帶電,光子之間沒有相互作用。控制光子比控制電子更簡單。因此,通過控制光子,可以更容易突破量子極限,從而進一步提高晶片的性能。如何才能精確地控制光子呢?人們發現,如果傳導光的材料具有晶體一樣的結構,那麼,這種材料也會具有光子的禁帶、導帶。
  • 大模場光子晶體光纖研製成功—新聞—科學網
    本報上海7月10日訊(記者黃辛)今天,記者從中科院上海光機所獲悉,該所陳丹平與胡麗麗率領的石英光纖材料課題組在大模場有源光子晶體光纖的研製方面取得了重要進展
  • 科學新進展——光子晶體
    這使得進一步提高晶片的性能也變得極為困難。即存在量子極限的限制。如何進一步提高晶片的性能呢?這時,人們想到了光子。光子不帶電,光子之間沒有相互作用。控制光子比控制電子更簡單。因此,通過控制光子,可以更容易突破量子極限,從而進一步提高晶片的性能。如何才能精確地控制光子呢?人們發現,如果傳導光的材料具有晶體一樣的結構,那麼,這種材料也會具有光子的禁帶、導帶。這不就是傳導光的晶體嗎!
  • 化學所成功製備橢球形結構基元三維光子晶體
    在國家自然科學基金委、科技部和中國科學院的支持下,中科院化學所光化學院重點實驗室合成製備了具有良好單分散性的磁性γ-Fe2O3@SiO2核殼結構橢球形膠體顆粒,並且利用外加磁場控制非球形顆粒的軸向取向,通過傳統對流自組裝法組裝得到橢球基元三維光子晶體
  • 量子點進入三維光子晶體
    研究人員首次將InAsSb量子點嵌入一個GaAs的三維光子晶體當中。    一個由日本科學家組成的科研小組克服現有的製造問題,製備出首個內含量子阱的三維光子晶體,在關鍵的通信級波長1.5µm處發射。
  • 飛秒雷射三維微細加工製作三維光子晶體
    光子晶體是一種折射率或介電常數以周期性排列構成的特殊物質,由於其具有光子帶隙,在很多領域都具有很好的應用前景。但光子晶體在製備方面有一定的難度,下面就來介紹一下利用微納加工技術製作三維光子晶體的方法。
  • 我科學家研製出新型可擴展光子計算機
    2月2日,記者從上海交通大學集成量子信息技術研究中心獲悉,該中心金賢敏團隊研製出一種結合集成晶片、光子概念和非馮諾依曼計算架構的光子計算機,新計算機不僅在解決某些難題方面擁有超越經典電子計算機的潛力,且物理尺度可擴展。
  • 光子晶體光纖的導光原理和製作
    換句話說,光子晶體就是通過人工製造方法,使其晶體材料具有類似於半導體矽和其他半導體中相鄰原子所具備的周期性結構,只不過光子晶體的周期性結構的尺度遠遠大於電子禁帶晶體,其大小為波長數量級。如果破壞光子晶體的周期性結構,便使光子晶體成為不完全的光子晶體。光子晶體光纖就是應用這種不完全二維光子晶體延展為不完全三維光子晶體而成的。
  • 高非線性石英光子晶體光纖研製取得進展—新聞—科學網
    中科院上海光機所
  • 科學網—高非線性石英光子晶體光纖研製取得進展
    中科院上海光機所高非線性石英光子晶體光纖研製取得進展   本報訊 中國科學院上海光學精密機械研究所研究員廖梅松帶領非線性光纖課題組劉垠垚、吳達坤等人,在高非線性光子晶體光纖的研製方面取得了新進展。 由於高非線性光子晶體光纖具有普通階躍型光纖所不具備的特殊色散和高非線性,是產生超連續譜雷射的核心器件。超連續譜是一種具有超寬的光譜和高度方向性的高亮度寬帶光源,在生物醫學、超快光譜學、光纖通信、高分辨成像、傳感技術等方面有著重要應用。 高非線性石英光子晶體光纖由多圈尺寸在波長量級的空氣微孔包圍細小的纖芯構成,其結構精細複雜,拉制工藝難度極高。
  • 科研人員成功製備出高質量硫化鋅光子晶體
    近日,中國科學院深圳先進技術研究院副研究員李佳課題組在光子晶體領域取得新進展,成功製備出高質量硫化鋅光子晶體,不僅獲得近100%的高反射率,而且飽和度
  • 化學所在新型結構三維光子晶體研究方面取得新進展
    氧等離子刻蝕改變膠體光子晶體晶格示意圖光子晶體因其對光的調控作用顯現出巨大的研究價值。通過Bottom-Up方法將單分散亞微米膠體顆粒組裝成為三維周期性堆積結構,具有操作過程簡單、成本低、可大規模製備等優點,成為光子晶體走向應用的重要製備途徑。
  • 光子晶體光纖的特性及應用發展趨勢
    1996年,英國南安普頓大學光電子學研究中心J.C.Knight等在《Opt.Lett.》首次報導了所研製的實芯光子晶體光纖樣品,並將4個不同波長的光源注入1米長的該光纖中,測試其近場與遠場特性,證實了光在光子晶體光纖中的傳導特性。
  • 深圳先進院成功製備出高質量硫化鋅光子晶體
    近日,中國科學院深圳先進技術研究院李佳副研究員課題組在光子晶體領域取得新進展,成功製備出高質量硫化鋅光子晶體,不僅獲得
  • 甲蟲解決困擾科學家的光子晶體謎團
    在為光學計算研究光子晶體時,半導體製造商應該從大自然中獲得啟示。美國猶他大學研究巴西甲蟲的人員稱:這種蟲子奇異的彩虹色表明了其獨特的光子晶格結構——所謂的光子界「冠軍」結構。
  • 雷射全息光刻法製作光子晶體LED
    實驗中採用的雙光束全息裝置是由波長325nm的He-Cd雷射器組成的,在晶片上製作出方形排列的圓空氣孔二維光子晶體,刻蝕深度為100nm,未深入到有源層。由圖3可見,注入電流為1mA,無光子晶體時整個器件表面都有廣場分布,強度較弱,且大部分光從晶片邊緣發射;而相比之下,晶格常數為500nm的光子晶體很好地限制了橫嚮導波,光主要從晶片中心集中發射。
  • 中新學者構建出三維材料中的光子「高速公路」
    新華社杭州1月10日電(記者 朱涵)浙江大學和新加坡南洋理工大學的學者合作構建出首個三維光學拓撲絕緣體,在由該材料構建的光子「高速公路」上,光子避開材料雜質和缺陷,跑出了「Z」字形,大幅提高了傳輸效率。該成果於10日凌晨發表於《自然》雜誌。