高非線性石英光子晶體光纖研製取得進展—新聞—科學網

2020-12-05 科學網
中科院上海光機所
高非線性石英光子晶體光纖研製取得進展

 

本報訊 中國科學院上海光學精密機械研究所研究員廖梅松帶領非線性光纖課題組劉垠垚、吳達坤等人,在高非線性光子晶體光纖的研製方面取得了新進展。

由於高非線性光子晶體光纖具有普通階躍型光纖所不具備的特殊色散和高非線性,是產生超連續譜雷射的核心器件。超連續譜是一種具有超寬的光譜和高度方向性的高亮度寬帶光源,在生物醫學、超快光譜學、光纖通信、高分辨成像、傳感技術等方面有著重要應用。

高非線性石英光子晶體光纖由多圈尺寸在波長量級的空氣微孔包圍細小的纖芯構成,其結構精細複雜,拉制工藝難度極高。該課題組通過精確控制光纖拉制過程中的溫度、張力、速度等參數,研製出了適合1μm摻鐿光纖雷射器泵浦的光子晶體光纖,其外徑120μm,纖芯直徑5μm,零色散波長為1040nm。採用該光纖在1055 nm飛秒光纖雷射器的泵浦下,獲得了光譜覆蓋整個可見光波段的超連續譜輸出。

該光纖的成功研製標誌著上海光機所已掌握包括高非線性光子晶體光纖結構設計、預製棒製作、拉絲的全鏈路核心關鍵技術,為今後實現該光纖的器件化應用打下了重要基礎。(柯訊)

《中國科學報》 (2017-02-06 第4版 綜合)

相關焦點

  • 科學網—高非線性石英光子晶體光纖研製取得進展
    中科院上海光機所高非線性石英光子晶體光纖研製取得進展   本報訊 中國科學院上海光學精密機械研究所研究員廖梅松帶領非線性光纖課題組劉垠垚、吳達坤等人,在高非線性光子晶體光纖的研製方面取得了新進展。 由於高非線性光子晶體光纖具有普通階躍型光纖所不具備的特殊色散和高非線性,是產生超連續譜雷射的核心器件。超連續譜是一種具有超寬的光譜和高度方向性的高亮度寬帶光源,在生物醫學、超快光譜學、光纖通信、高分辨成像、傳感技術等方面有著重要應用。 高非線性石英光子晶體光纖由多圈尺寸在波長量級的空氣微孔包圍細小的纖芯構成,其結構精細複雜,拉制工藝難度極高。
  • 大模場光子晶體光纖研製成功—新聞—科學網
    本報上海7月10日訊(記者黃辛)今天,記者從中科院上海光機所獲悉,該所陳丹平與胡麗麗率領的石英光纖材料課題組在大模場有源光子晶體光纖的研製方面取得了重要進展
  • 新型微納光子晶體雷射器研製成功—新聞—科學網
    香港中文大學(深圳)理工學院教授張昭宇課題組與合作團隊在矽基光晶片領域取得重要進展,首次實現了可與微電子單片集成的矽基三五族微納光子晶體雷射器。
  • 上海瀚宇正式代理Crystal Fibre A/S公司光子晶體光纖
    作為全球領先的最大的光子晶體光纖開發和生產商,Crystal Fibre A/S公司從1996年以來,向全球的用戶不斷推出新型的特種光子晶體光纖系列產品,目前已經形成比較成熟的產品系列,並且持續推出新的光子晶體光纖產品。
  • 光子晶體光纖催化中國光纖行業
    Eli Yablonovitch等將此類結構命名為 「光子晶體」。很快,這一結構在光纖領域得到了移植應用。1992年,Phillip Russell等人提出「光子晶體光纖」(微結構光纖中的一類)。光子晶體光纖是由一簇細小的石英毛細管按照六邊形周期性排列,從橫截面上看去,就像是蜂窩結構。由於優良的傳輸特性,光子晶體光纖迅速在全球受到重視。
  • 北航研製的光子晶體光纖陀螺首飛成功
    7/7/2017,2017年4月,北京航空航天大學儀器科學與光電工程學院光電技術研究所研製的高精度光子晶體光纖陀螺實現了在「天舟一號」貨運飛船上首次搭載飛行,獲圓滿成功,這是國際上光子晶體光纖陀螺的首次空間應用,驗證了光子晶體光纖陀螺作為新一代光學陀螺的技術可行性。
  • 光子晶體光纖及其應用
    文章綜述了光子晶體光纖的研究進展,給出其分類,並重點介紹了光子晶體光纖在超短脈衝、光頻測量、光纖通信等科研領域的重要應用以及未來的發展前景。光子晶體光纖(photonic crystalfiber,PCF)是基於光子晶體技術發展起來的新一代傳輸光纖。由於光子晶體光纖結構的可控性可以滿足人們對於不同信號傳輸特性的PCF的需要,因此引起了很多相關科研領域的極大興趣。光子晶體光纖的概念最早是由Russell St J p等人於1992年提出的。
  • 3分鐘了解光子晶體光纖
    這類基於全內反射導光機理導光的光子晶體光纖也稱為折射率導光型光子晶體光纖。由於該類光纖對包層結構的周期性要求並不嚴格,空氣孔的引入只是起到降低並調控包層等效折射率的作用,因此工藝上易於實現,早期報導的光子晶體光纖大多是基於全內反射機理導光。圖2 不同導光機理的光子晶體光纖。
  • 光子晶體光纖的特性及應用發展趨勢
    光子晶體光纖的結構與常規光纖迥然不同,普通的光纖是由實體的纖芯和包層構成的,而光子晶體光纖的包層由空氣孔和石英構成,空氣孔在纖芯的外圍以正六邊形的樣子規則排列。石英-空氣複合結構的光子晶體光纖大折射率反差、高度可控制的周期性折射率變化,為光的傳導與控制提供了新的機理及途徑。
  • 光子晶體光纖的導光原理和製作
    光纖中光能損耗主要來源於吸收損耗和散射損耗。其中。吸收損耗包括本徵吸收和雜質(如氫氧根離子)引起的選擇吸收;散射損耗包括瑞利散射。光纖結構不完善和材料中缺陷引起的散射。從矽玻璃光纖的光學損耗和波長關係得到了在;1.3μm和;1.55μm處分別有損耗極小值。目前已經作為通信的兩個窗口。因此。研製能夠克服傳統光纖弱點的新一代光纖成為目前光電子器件發展的主要方向之一。
  • 光子晶體光纖的原理、結構、製作及潛在應用
    在介紹光子晶體光纖的製作、導光原理和特點的基礎上,研究了普通光纖不具備,而光子晶體光纖所具有的無休止的單模特性、奇異的色散特性、可控的非線性和易於實現的多芯傳輸等特點。研究結果表明,光子晶體光纖在光纖傳感器、光子晶體天線、超寬色散補償、光學集成電路等多方面具有廣泛的應用前景。
  • 保偏光子晶體光纖雷射器實驗研究
    折射率引導型光子晶體光纖(photonic crystal fiber,PCF),可通過調整光纖空氣孔徑和空氣孔周期比(d/A),及內外包層中空氣孔的大小和密度,實現大單模模場面積及大內包層數值孔徑設計,同時纖芯的高濃度稀土摻雜為採用較短長度的光纖構建大功率雷射器提供了可能。深圳大學在光子晶體光纖雷射器研究領域已經取得了一定進展。
  • 光子晶體光纖在光纖雷射器中的應用分析
    對於採用常規光纖的光纖雷射器,要求注入到纖芯的泵浦光為單模,這就限制了泵浦光的入纖效率。且當雷射器高功率運轉時,由於纖芯的非線性效應,也將限制輸出功率的極限值。光子晶體光纖由於其靈活的光學可控性和特殊結構,可具有大模面積且保持無限單模的特性, 有效地克服了常規光纖的設計缺陷。
  • 進展 | 二維材料複合光纖實現超高非線性效應
    隨著光通信技術的發展,光纖已經成為現代信息社會的重要支撐。非線性光纖作為一種特殊用途光纖,不僅在新型光纖通訊技術中有重要應用和發展前景,而且在光波長轉換、超快光纖雷射和超連續雷射等光物理基礎和器件研究等領域具有很大應用潛力。然而,傳統石英光纖僅表現出非常微弱的奇數階非線性效應,嚴重限制了在非線性光學領域的廣泛應用。
  • 進展 | 二維拓撲光子晶體微腔取得新進展
    拓撲光子學在近十幾年得到了廣泛的關注及研究,尤其是在拓撲邊界態的應用研究上取得了重要的進展,例如單向傳輸、拓撲雷射等。除了邊界態外,最近國內外很多課題組提出在高階拓撲絕緣體中存在零維拓撲角態,並且已經在多種體系中實現,包括二維的光子晶體結構。這種零維的高階拓撲態為設計具有高品質因子的拓撲光學微腔提供了一個新的平臺。
  • 抗光子暗化、深紫外傳能空芯光纖研究獲進展
    、深紫外傳能空芯光纖研究中取得的突破性進展。上海光機所高功率雷射單元技術實驗室研發的反諧振型空芯石英光纖,在218nm波段實現了0.1dB/m的低損傳輸,較傳統熔融石英光纖損耗降低了近一個數量級。在傳輸脈衝寬度17ns、脈衝能量0.47μJ、重頻30kHz的266nm調Q雷射的過程中,空芯光纖在1小時內無光子暗化現象出現,遠遠超越折射率型石英光纖表現。該研究成果發表於Opt. Express 26, 10879 (2018)。
  • 【研究】光子晶體光纖的特性及應用發展趨勢
    1.光子晶體光纖雷射器光纖雷射器已經廣泛應用於雷射切割、雷射焊接、雷射鑽孔、雷射雕刻、雷射打標、雷射雷達、傳感技術和空間技術以及雷射醫學等領域。國際上,摻鐿光纖雷射器單根光纖已經實現了9600W的單模雷射功率輸出。2016年,我國摻鐿光纖雷射器的單纖輸出雷射功率達到5kW。
  • ZBLAN光子晶體光纖用於產生深紫外至中紅外超連續光譜
    基於石英的光子晶體光纖在產生超連續光譜方面非常成功,然而熔融石英玻璃在中紅外具有較強的材料吸收能力以及與紫外線有關的光學損傷
  • 進展|二維拓撲光子晶體微腔取得新進展
    拓撲光子學在近十幾年得到了廣泛的關注及研究,尤其是在拓撲邊界態的應用研究上取得了重要的進展,例如單向傳輸、拓撲雷射等。除了邊界態外,最近國內外很多課題組提出在高階拓撲絕緣體中存在零維拓撲角態,並且已經在多種體系中實現,包括二維的光子晶體結構。
  • 理化所等光子晶體驅動材料研究取得新進展
    光子晶體超浸潤性賦予具有獨特光學調控性能的光子晶體材料在傳感、檢測、防汙、驅動、油水分離等方面的新應用。中國科學院理化技術研究所仿生材料與界面科學重點實驗室江雷團隊在具有超浸潤性光子晶體的製備及應用方面取得系列進展(Chem. Soc. Rev., 2016, 45, 6833)。