...個高性能可拉伸自供能系統誕生:攻克柔性電子充電難,實現石墨烯...

2020-12-03 雲財經

雲財經訊,近日,美國賓夕法尼亞州立大學工程科學與力學系程寰宇助理教授,與福建閩江學院王軍教授以及南京大學唐少龍教授等合作,實現了褶皺

石墨烯

力學

傳感器

的自供能設計,研究論文以《用於自供電可拉伸系統的高能全合一可拉伸微超級電容器陣列和基於三維雷射誘導

石墨烯

泡沫裝飾介孔ZnP納米片》為題發表於國際能源頂級刊物Nano Energy。(DeepTech

深科技(000021)

)

相關焦點

  • 全球首個高性能可拉伸自供能系統誕生電
    全球首個高性能可拉伸自供能系統誕生電 DeepTech深科技 發表於 2020-12-04 14:48:08 近日,美國賓夕法尼亞州立大學工程科學與力學系程寰宇助理教授
  • 攻克柔性電子充電,實現石墨烯力學傳感器自充電
    原標題:全球首個高性能可拉伸自供能系統誕生!攻克柔性電子充電難,實現石墨烯力學傳感器自充電近日,美國賓夕法尼亞州立大學工程科學與力學系程寰宇助理教授,與福建閩江學院王軍教授以及南京大學唐少龍教授等合作,實現了褶皺石墨烯力學傳感器的自供能設計,研究論文以《用於自供電可拉伸系統的高能全合一可拉伸微超級電容器陣列和基於三維雷射誘導石墨烯泡沫裝飾介孔ZnP納米片》(High-energy all-in-one
  • 中美科學家攻克柔性電子充電,實現石墨烯力學傳感器自充電
    近日,美國賓夕法尼亞州立大學工程科學與力學系程寰宇助理教授,與福建閩江學院王軍教授以及南京大學唐少龍教授等合作,實現了褶皺石墨烯力學傳感器的自供能設計,研究論文以《用於自供電可拉伸系統的高能全合一可拉伸微超級電容器陣列和基於三維雷射誘導石墨烯泡沫裝飾介孔ZnP納米片》(High-energy all-in-one stretchable micro-supercapacitor
  • 中美科學家聯合研究、 全球首個高性能可拉伸自供能系統誕生
    近日,美國賓夕法尼亞州立大學工程科學與力學系程寰宇助理教授,與福建閩江學院王軍教授以及南京大學唐少龍教授等合作,實現了褶皺石墨烯力學傳感器的自供能設計,研究論文以《用於自供電可拉伸系統的高能全合一可拉伸微超級電容器陣列和基於三維雷射誘導石墨烯泡沫裝飾介孔ZnP納米片》(High-energy
  • 可拉伸性一維柔性電子器件首篇綜述
    在過去的幾十年裡,電子終端設備變得越來越小,在尺寸和便攜性方面的要求帶動了可穿戴電子產品的快速發展。一維結構電子設備具有獨特的柔軟性、可拉伸性、透氣性和高耐磨性等,使其在可穿戴電子產品領域有廣闊前景。然而,目前為止,很少有有文章對可拉伸性一維柔性電子器件進行討論。
  • 石墨烯納米卷可實現堅固耐用的柔性微型超級電容器
    由石墨烯納米卷組成的薄膜電極具有出色的耐用性。具有石墨烯納米卷的柔性微型超級電容器具有出色的耐用性。1成果簡介 小型,靈活和自供電的電子系統的興起極大地刺激了對微型電化學儲能裝置的迫切需求。令人印象深刻的是,平面離子超級電容器(MSC)由於快速的離子傳輸,超長的使用壽命以及易於與微電子設備集成而起著至關重要的作用。遺憾的是,MSC中薄膜電極的堅固性通常不能滿足薄膜電極的結構穩定性和裝置的耐用性。
  • 基於3D雷射誘導石墨烯的可伸縮微型超級電容器自供電可穿戴設備
    基於3D雷射誘導的石墨烯可伸縮的微型超級電容器,可自供電可穿戴設備由賓夕法尼亞州立大學工程煥宇教授科學與力學系的多蘿西·奎格(Dorothy Quiggle)職業發展教授,教授Huanyu" Larry" 程煥宇教授帶領的一組國際研究人員,已經開發出一種自供電,可拉伸的系統,該系統將用於可穿戴式健康監測和診斷設備
  • UCLA賀曦敏《Matter》:普適製備用於可穿戴電子的高性能可拉伸導電水凝膠
    可拉伸導電材料是軟電子學的關鍵組成部分,通常需要多個組件協同貢獻良好的機械、電氣和界面性能。其內在的變形性和可靠性是人們最關心的問題。實現這一目標的方法主要包括:對導電聚合物的分子結構或形貌進行修飾、在可伸縮網絡中加入導電納米填充物以及將液態金屬嵌入彈性體中等。
  • 寧波材料所:石墨烯納米卷可實現堅固耐用的柔性微型超級電容器
    本文要點:通過凍幹獲得具有不同長寬比的石墨烯納米卷。由石墨烯納米卷組成的薄膜電極具有出色的耐用性。具有石墨烯納米卷的柔性微型超級電容器具有出色的耐用性。成果簡介 小型,靈活和自供電的電子系統的興起極大地刺激了對微型電化學儲能裝置的迫切需求。
  • 柔性、可彎曲化將是未來電子設備的發展潮流
    (彎曲、摺疊、扭轉、壓縮或拉伸)條件下仍可工作的電子設備,比如像下面幾幅圖所示的具有酷炫樣式和功能的設備。很多廠商目前都已經開始研發和推出相關的產品,比如彎曲顯示器與觸屏、射頻識別標籤、可穿戴傳感器、可植入醫療器械、手環、手錶甚至是手機等等。不難看出,柔性、可彎曲化將是未來電子設備的發展潮流,是科技領域中未來若干年內的重要增長點。下面就來了解一下相關內容吧。
  • 基於3D雷射誘導的石墨烯泡沫超級電容器陣列的供能策略
    柔性可穿戴電子器件具有質輕、易結合皮膚、能承受力學變形,逐漸在日常生活中嶄露頭角。然而,目前所採用的傳感器,普遍需要使用外部供能驅動,極大的限制了柔性可穿戴優勢的極致發揮。另外,人體從機械運動、關節旋轉等過程可以產生可用的電能,這就給利用先進的能量收集技術給柔性可穿戴電子器件供能提供了極好的機會。因此,設計自供能、可穿戴電子器件有望實現這些設備的永久供能,具有重大科學意義和應用前景。
  • 史丹福大學鮑哲南團隊《AEM》綜述:柔性可拉伸電池
    可穿戴電子設備日益融入我們的日常生活,從2014年到2019年,可穿戴電子設備每年都會增長25%。而這些可穿戴電子設備對人體的監測功能種類在持續更新。現如今,血氧檢測傳感器、體溫檢測傳感器等有已經商業化,在實驗室中也有許多傳感器正在開發以期實現更為複雜的功能如神經調節、電子皮膚等等。
  • 劉忠範院士團隊:高安全、全柔性石墨烯改性鋰離子電池
    鋰離子電池(簡稱LIB)是一種可充電電池,最早由埃克森美孚(Exxon)的化學家斯坦利•惠廷漢姆(M Stanley Whittingham)於20世紀70年代提出。鋰離子電池通常用於可攜式電子設備和電動汽車,並且在軍事和航空航天應用中日益流行。
  • 高性能「三合一」新策略!中科院化學所《ACS Nano》:兼具高各向異性導熱和導電性能的柔性石墨烯納米複合材料
    為滿足特定的技術要求,在很多應用場合需要具備高度各向異性的高導熱和導電柔性材料,高導熱性作為散熱器件可以大幅度降低器件內部或表面溫度,進而高效、經濟地利用熱量,同時各向異性導電性可消除特定方向上的靜電,為安全提供保障。目前,開發高各向異性的導熱和導電柔性聚合物材料是一個具有挑戰性和有意義的研究課題。
  • 橡膠半導體:讓可拉伸電子器件離商業化更近一步!
    導讀近日,美國休斯敦大學在創造可拉伸的橡膠半導體方面取得重要進展,讓可拉伸的電子器件離商業化又更近了一步。背景傳統的電子產品與電子電路,會給我們一種「僵硬」的感覺。換句話說,它們是「剛性」的,無法彎曲、摺疊、扭轉、壓縮、拉伸。這樣不僅限制了它們的應用潛力,也會影響用戶的體驗。
  • 可拉伸3D多孔雷射誘導石墨烯圖案上可監測威脅人體健康有毒氣體
    將rGO/MoS2複合材料集成在叉指電極或雷射誘導的多孔石墨烯導電圖案上,可得到超靈敏,可拉伸的室溫NO2傳感器,該傳感器具有出色的選擇性和在機械變形時的穩健運行。可變形的氣體傳感器可以穿戴在皮膚或柔軟的表面上,以檢測各種氣態化合物,是準確、實時監控健康或環境狀況所不可或缺的。
  • 浙大研發石墨烯雙向中紅外通訊系統,可用於紅外光電器件領域
    先進的中紅外通訊系統在保密通訊、醫療保健、環境監測、氣象科學及太空探索等領域有著重要的應用價值。光學通訊系統通常由兩個基本的功能性結構單元(即發射器和接收器)輔以其它信號處理裝置組成。在傳統的通訊系統中,發射和接收的功能通常由不同的器件分別實現。倘若能找到一種兼具發射和接收功能的材料來實現雙向通訊,就可使通訊系統大大簡化並提高效率。
  • 大連理工《JMCA》:高性能可充電鋅離子電池的自支撐正極材料!
    導讀:本文報導了一種在鹼處理碳布上原位生長的二維水合釩酸銨納米片作為高性能鋅離子電池(ZIBs)的自支撐正極的方法。以此材料組裝的紐扣ZIB在0.1 A g-1的電流密度下能達到523 mA h g-1,能量密度達到343 W h kg-1@150 W kg-1。在組裝成準固態柔性ZIB時,能夠保持良好的穩定性。現如今,社會對環保、安全、高效、低成本的先進儲能設備的迫切需求,推動了二次電池的研究。
  • 大連理工《JMCA》:高性能可充電鋅離子電池的自支撐正極材料
    導讀:本文報導了一種在鹼處理碳布上原位生長的二維水合釩酸銨納米片作為高性能鋅離子電池(ZIBs)的自支撐正極的方法。以此材料組裝的紐扣ZIB在0.1 A g-1的電流密度下能達到523 mA h g-1,能量密度達到343 W h kg-1@150 W kg-1。在組裝成準固態柔性ZIB時,能夠保持良好的穩定性。
  • 柔性電子常用材料是那些柔性電子那應用在那些行業
    相對於傳統矽電子,柔性電子是指可以彎曲、摺疊、扭曲、壓縮、拉伸、甚至變形成任意形狀但仍保持高效光電性能、可靠性和集成度的薄膜電子器件。 壓電ZnS的電子能帶在壓力作用下產生壓伏效應而產生傾斜,這樣可以促進錳離子的激發,接下來的去激發過程發射出黃光。 碳材料 柔性可穿戴電子傳感器常用的碳材料有碳納米管和石墨烯等。碳納米管具有結晶度高、導電性好、比表面積大、微孔大小可通過合成工藝加以控制、比表面利用率可達100%的特點。