新型胞嘧啶鹼基編輯器拓展C/G-T/A單鹼基編輯適用範圍研究獲進展

2021-01-10 中國生物技術網

8月9日,《自然-通訊》雜誌在線發表了題為《多種胞苷脫氨酶為基礎擴展的C-T單鹼基編輯工具》的研究論文。該研究由中國科學院腦科學與智能技術卓越創新中心/神經科學研究所、上海腦科學與類腦研究中心、神經科學國家重點實驗室仇子龍研究組與復旦大學中山醫院教授王小林實驗室合作完成。該研究以新的胞苷脫氨酶為基礎構建出多種新型的CBE工具。與傳統CBEs相比,新型CBEs的單鹼基編輯窗口更加多樣化,脫靶風險也顯著降低,這為C/G-T/A單鹼基編輯技術的更廣泛應用提供了有力工具。

CRISPR/Cas9技術的誕生讓高效基因編輯成為可能,但同源重組介導的精準基因編輯效率有限,限制了該技術的廣泛應用。2016年以來,研究者發現將鹼基脫氨酶(如胞苷脫氨酶APOBEC1及腺苷脫氨酶TadA變體)與CRISPR/Cas系統整合開發出的單鹼基編輯系統,可在不切斷DNA雙鏈的情況下精準引入C/G-T/A及A/T-G/C點突變,從而實現高效精準的基因編輯。理論上講,單鹼基編輯系統可用於數百種遺傳病的治療,因此具有極大的臨床應用潛力。

現有的胞嘧啶鹼基編輯器CBE系統中,其核心的胞苷脫氨酶主要取自經典的AID/APOBEC蛋白家族,因此其編輯窗口和特異性有明顯的相似性。雖然研究者嘗試通過不同的策略,如不同的CRISPR系統、各類Cas9變體及SunTag系統以拓展編輯窗口,現有CBE系統的編輯窗口依然有限,這極大地限制了該系統的適用範圍。

為增加CBE系統編輯窗口的多樣性,拓展其單鹼基編輯的適用範圍,仇子龍團隊對新近發現的十數種七鰓鰻來源的胞苷脫氨酶進行系統性篩選,在此基礎上構建的新型CBE系統的編輯窗口更加多樣化,且編輯範圍明顯增加(圖)。研究團隊還發現,胞苷脫氨酶與nCas9的融合策略不同,其編輯窗口也會發生改變:通常情況下,與nCas9氨基末端融合相比,nCas9羧基末端融合的胞苷脫氨酶有著更窄更精準的編輯窗口。除此之外,研究團隊還對不同CBE系統的特異性進行了系統比較,發現新構建的N-1-BE, N-7-BE, C-8-BE和N-12-BE系統的脫靶風險明顯降低,呈現出更高的特異性。新型CBE系統在編輯窗口和特異性上的改善為單鹼基編輯技術的應用提供了更多選擇,新的胞苷脫氨酶也為未來單鹼基編輯工具的開發和改善提供了基礎。

仇子龍組的助理研究員程田林為該研究論文的第一作者和共同通訊作者,王小林實驗室博士後李碩和仇子龍組助理研究員袁博在課題研究中發揮重要作用。該課題在仇子龍的指導下完成,並得到腦智卓越中心流式分選平臺的大力協助。該工作得到國家自然科學基金、上海市科學技術委員會項目和上海市慈善基金會榮昶公益基金的資助。

圖註:CBE系統的分類,CBE系統的活性窗口定義為sgRNA中編輯效率>40%的C位點。(a) 前置型CBE(FSCBEs),其活性窗口主要位於sgRNA靶位點的前端(PAM位點看作最末端)。(b)後置型CBE(BSCBEs),活性窗口主要位於sgRNA靶位點的後端。(c)廣譜型CBE(BRCBEs),活性窗口橫跨sgRNA靶位點的前後端。

中國生物技術網誠邀生物領域科學家在我們的平臺上,發表和介紹國內外原創的科研成果。

註:國內為原創研究成果或評論、綜述,國際為在線發表一個月內的最新成果或綜述,字數500字以上,並請提供至少一張圖片。投稿者,請將文章發送至weixin@im.ac.cn。

本公眾號由中國科學院微生物研究所信息中心承辦

相關焦點

  • 高精度單鹼基基因編輯工具研究獲進展
    高精度單鹼基基因編輯工具研究獲進展 2020-05-19 腦科學與智能技術卓越創新中心 上海營養與健康研究所 >團隊和楊輝團隊又分別報導了胞嘧啶單鹼基編輯器和腺嘌呤單鹼基編輯器存在大量的RNA脫靶效應。
  • 中國科學家發現胞嘧啶單鹼基編輯器存在全基因組範圍的脫靶效應...
  • 新型鹼基編輯器在微生物中實現任意鹼基編輯
    新型鹼基編輯器在微生物中實現任意鹼基編輯◎本報記者 陳 曦作為基因組編輯前沿技術,無需產生DNA雙鏈斷裂,也無需供體DNA的參與,實現靶位點的精準點突變,已成為基因編輯的重要研究方向。中國科學院天津工業生物技術研究所張學禮研究員帶領的微生物代謝工程研究團隊和畢昌昊研究員帶領的合成生物技術研究團隊聯合攻關,設計構建了胞嘧啶脫氨酶-nCas9-Ung蛋白複合物,創建出新型糖基化酶鹼基編輯器(GBE),開發了可實現嘧啶和嘌呤間轉換的單鹼基基因編輯系統。基於該系統,國際上首次在微生物中實現任意鹼基編輯、在哺乳動物細胞中實現胞嘧啶(C)與鳥嘌呤(G)的特異性轉換。
  • 新型鹼基編輯器首次在微生物中實現任意鹼基編輯
    作為基因組編輯前沿技術,無需產生DNA雙鏈斷裂,也無需供體DNA的參與,可實現靶位點的精準點突變,已成為基因編輯的重要研究方向。開發新型鹼基編輯技術實現鹼基顛換甚至任意鹼基變換,在合成生物體系構建、遺傳疾病的基因治療、生物性狀修飾等領域具有重要意義。
  • 中美學者各自開發新型雙鹼基編輯器,同時實現兩種單鹼基編輯
    Keith Joung 的研究基礎上首次開發出了單鹼基編輯器(Base Editor),在不依賴DNA雙鏈斷裂的情況下,實現對單個鹼基的定向修改。腺嘌呤和胞嘧啶雙鹼基編輯器(A&C-BEmax),這一雙鹼基編輯器可以在同一靶標位點實現C-T和A-G轉化。
  • 高精準胞嘧啶鹼基編輯工具!植物基因工程技術又進一步
    (APOBEC3B)蛋白的理性設計,並結合新型的胞嘧啶鹼基編輯篩選方法,開發出了新型高精度、高編輯活性的胞嘧啶鹼基編輯工具。單鹼基編輯器主要分為兩類,胞嘧啶單鹼基編輯器 (cytosine base editor, CBE)與腺嘌呤單鹼基編輯器 (adenine base editor, ABE),分別由胞嘧啶脫氨酶或改造的腺嘌呤脫氨酶與nCas9蛋白融合而來,對應地可在基因組中的靶向位點實現C>T或A>G的鹼基編輯。
  • Science:中科院高彩霞課題組發現胞嘧啶鹼基編輯器引發意想不到的...
    2019年3月2日訊/生物谷BIOON/---在一項新的研究中,中國科學院的高彩霞(Caixia Gao)課題組通過對作為一種重要的作物物種的水稻進行全基因組測序對胞嘧啶鹼基編輯器(BE3和HF1-BE3)和腺嘌呤鹼基編輯器(ABE)產生的脫靶突變進行全面調查。他們發現胞嘧啶鹼基編輯器(BE3和HF1-BE3)誘導全基因組脫靶突變。
  • 超高活性胞嘧啶鹼基編輯器開發成功—新聞—科學網
    5月11日,華東師範大學生命科學學院李大力課題組在《自然—細胞生物學》上發表論文,介紹了最近開發的超高活性胞嘧啶鹼基編輯器(hyCBE)。
  • 遺傳所開發出高精準胞嘧啶鹼基編輯工具
    近日,中國科學院遺傳與發育生物學研究所高彩霞團隊通過對人類胞嘧啶脫氨酶(APOBEC3B)蛋白的理性設計,並結合新型的胞嘧啶鹼基編輯篩選方法,開發出了新型高精度,高編輯活性的胞嘧啶鹼基編輯工具。北京時間2020年7月27日晚23時,相關論文在線發表於《分子細胞》。
  • 腺嘌呤鹼基編輯器可催化胞嘧啶轉化
    腺嘌呤鹼基編輯器可催化胞嘧啶轉化 作者:小柯機器人 發布時間:2019/9/24 15:33:53 韓國漢陽大學的Sangsu Bae研究組與首爾國立大學的Jin-Soo Kim研究組合作發現
  • 高彩霞課題組開發出高精準胞嘧啶鹼基編輯工具
    近日,中國科學院遺傳與發育生物學研究所高彩霞團隊通過對人類胞嘧啶脫氨酶(APOBEC3B)蛋白的理性設計,並結合新型的胞嘧啶鹼基編輯篩選方法,開發出了新型高精度,高編輯活性的胞嘧啶鹼基編輯工具。北京時間2020年7月27日晚23時,相關論文在線發表於《分子細胞》。
  • Nature Biotechnology:新的CRISPR C-G DNA鹼基編輯器
    麻薩諸塞州總醫院(MGH)J.Keith Joung實驗室的研究人員開發的新基因組編輯技術有可能幫助理解基於C-to-G(胞嘧啶到鳥嘌呤
  • 中美聯合開發新的胞嘧啶鹼基編輯器,消除了旁觀者突變
    中美聯合開發新的胞嘧啶鹼基編輯器,消除了旁觀者突變 2020-07-20 18:41 來源:澎湃新聞·澎湃號·湃客
  • 新型鹼基編輯技術開發取得突破
    作為基因組編輯前沿技術,鹼基編輯(BE)無需產生DNA雙鏈斷裂,也無需供體DNA的參與,可實現靶位點的精準點突變,已成為基因編輯的重要研究方向。現有鹼基編輯器只能實現嘧啶間(胞嘧啶鹼基編輯器)和嘌呤間(腺嘌呤鹼基編輯器)的鹼基轉換,尚沒有鹼基編輯器實現嘧啶與嘌呤間的特異性鹼基顛換。
  • 科學網—科學家開發出高精準胞嘧啶鹼基編輯工具
    本報訊(見習記者韓揚眉)中國科學院遺傳與發育生物學研究所高彩霞團隊通過對人類胞嘧啶脫氨酶(APOBEC3B)蛋白的理性設計
  • 科學網— 創建新型糖基化酶鹼基編輯器
    本報訊(記者閆潔)中科院天津工業生物所研究員張學禮和畢昌昊帶領的團隊聯合攻關,創建出新型糖基化酶鹼基編輯器(GBE),
  • 【學術前沿】 李大力課題組開發超高活性的系列胞嘧啶鹼基編輯器...
    而通過將胞嘧啶脫氨酶與nickase Cas9(D10A)融合而成的胞嘧啶鹼基編輯器BE3(Cytosine base editor, CBE), 在不引入 DNA 雙鏈斷裂同時也不需要重組修復模板的情況下對編輯窗口(距離PAM遠端起的第4-7位)內的胞嘧啶脫氨,實現C>T的鹼基轉換,具有更加安全、高效、精準的特點【3】。在基因治療,農作物遺傳育種,藥物篩選等領域展示了廣泛的應用前景【1】。
  • 重大進展!高彩霞/王延鵬開發出高精準胞嘧啶鹼基編輯工具
    胞嘧啶鹼基編輯器(CBE)在基因組靶位點產生C-T核苷酸取代,而不會引起雙鏈斷裂。但是,諸如BE3的CBE可以通過不依賴sgRNA的DNA脫氨作用而引起全基因組脫靶變化。而且,這兩個鹼基編輯器變體通過產生較少的C編輯,在其目標位置更加精確。總之,該工作結合基於結構信息的蛋白理性設計、植物個體全基因組脫靶檢測技術和高通量R-loop脫靶檢測技術,進一步提高了單鹼基編輯的精確性,開發出的兩種能保持高編輯效率且無隨機脫靶效應的CBE變體,為基因治療和植物分子設計育種提供了強有力的工具支撐。
  • ...高彩霞課題組發現胞嘧啶鹼基編輯器引發意想不到的全基因組脫靶...
    2019年3月2日訊/生物谷BIOON/---在一項新的研究中,中國科學院的高彩霞(Caixia Gao)課題組通過對作為一種重要的作物物種的水稻進行全基因組測序對胞嘧啶鹼基編輯器(BE3和HF1-BE3)和腺嘌呤鹼基編輯器(ABE)產生的脫靶突變進行全面調查。他們發現胞嘧啶鹼基編輯器(BE3和HF1-BE3)誘導全基因組脫靶突變。
  • Nat Biotech 導讀 | 雙鹼基編輯器、編輯器定向優化等
    華東師範大學李大力研究組發文題為Dual base editor catalyzes both cytosine and adenine base conversions in human cells,開發了一種新型雙鹼基編輯器催化胞嘧啶和腺嘌呤鹼基在人類細胞的轉化