為將來基於範德華異質結的析氫反應研究和開發提供新的思路。
因成本低廉、儲存豐富、化學活性強,過渡金屬硫化物,如MoS2,有望替代傳統鉑(Pt)基材料,成為新一代高效的析氫反應(HER)催化劑。多年來,科學界一直致力於各種微納結構的MoS2製備以期待極大地暴露其邊界位點,抑或通過化學摻雜對其邊界的電子結構進行修飾以增強位點本身的催化活性。但實際上MoS2基面在催化劑中佔比遠大於邊界,因此如何活化基面是未來進一步提高MoS2的HER活性的關鍵。比如,有研究指出通過誘導相變,將半導體特性2H-MoS2轉變為金屬特性的1T/1T′-MoS2,可以增強其基面的HER催化活性。但是1T/1T'相不穩定,容易在輻射或變溫條件下向2H穩定相轉變,嚴重限制了MoS2的實際應用。
來自重慶大學光電工程學院光電技術與系統教育部重點實驗室的凌發令等人,利用基於密度泛函理論的第一性原理計算,預測了可通過異質結界面耦合作用對基面缺陷電子結構進行調控,以增強MoS2的催化能力。他們將MoS2與其它常見二維材料組合而構建成各種笵德華異質結。構建這種異質結的2D構件包括石墨烯、h-BN、黑磷、過渡金屬二硫化物和過渡金屬碳化物/氮化物(MXenes)及其官能化衍生物MXene-X(X = OH,O,F)。他們的研究表明,硫空位誘導的缺陷態特徵(尤其是最低未佔態的位置和密度),可通過異質結內的層間相互作用進行微調。MoS2/MXene-OH異質結的硫空穴濃度低到2.5%時,就可實現ΔGH= 0的最佳H吸附,如此低的濃度極限前所未有,在實驗中很容易實現。此外,這種異質結內的層狀幾何結構還能使有效硫空位儘可能地暴露,這可用於高孔隙率的高效催化劑,為其實用化鋪平了一條光明的大道。他們的發現有很強的普適性,可為將來基於範德華異質結的析氫反應和其他重要化學反應的非均相催化劑研究和開發提供新的思路。
該文近期發表於npj Computational Materials 5: 20 (2019),英文標題與摘要如下,點擊https://www.nature.com/articles/s41524-019-0161-8可以自由獲取論文PDF。
Enhancing hydrogen evolution on the basal plane of transition metal dichacolgenide van der Waals heterostructures
Faling Ling, Wei Kang, Huirong Jing, Wen Zeng, Yankun Chen, Xiaoqing Liu, Yixin Zhang, Lin Qi, Liang Fang & Miao Zhou
Recent years have seen a surge in the use of low-dimensional transition metal dichacolgenides, such as MoS2, as catalysts for the electrochemical hydrogen evolution reaction. In particular, sulfur vacancies in MoS2 can activate the inert basal plane, but that requires an unrealistically high defect concentration (~9%) to achieve optimal activity. In this work, we demonstrate by first-principles calculations that assembling van der Waals heterostructures can enhance the catalytic activity of MoS2 with low concentrations of sulfur vacancies. We integrate MoS2 with various two-dimensional nanostructures, including graphene, h-BN, phosphorene, transition metal dichacolgenides, MXenes, and their derivatives, aiming to fine-tune the free energy of atomic hydrogen adsorption. Remarkably, an optimal free energy can be achieved for a low sulfur vacancy concentration of ~2.5% in the MoS2/MXene-OH heterostructure, as well as high porosity and tunability. These results demonstrate the potential of combining two-dimensional van der Waals assembly with defect engineering for efficient hydrogen production.
特別聲明:以上內容(如有圖片或視頻亦包括在內)為自媒體平臺「網易號」用戶上傳並發布,本平臺僅提供信息存儲服務。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.