最新研究:海森堡極限取得有意義的更新

2020-12-05 量子認知

在量子計量學中,尤其是在幹涉測量中,海森堡極限是指測量精度可以隨測量中使用的能量成比例的最佳速率。適當定義海森堡極限是量子力學基本原理的結果。

量子理論的基石之一是對精度的基本限制,按照這一限制我們可以通過該精度知道某些成對的物理量,例如位置和動量。對於量子理論處理,這種不確定性原理是根據海森堡極限來描述的,該極限允許在量子力學的公式化中沒有相應觀察到的物理量,例如時間和能量,或者在幹涉測量中觀察到的相位。就使用的資源而言,它對測量精度設置了基本限制。

現在,波蘭和澳大利亞的科學家聯合團隊的合作研究更新了海森堡極限,研究結果證明,通常所說的海森堡極限在操作上沒有意義,並且與正確極限相差π倍。這一題為「π校正的海森堡極限」的研究成果論文發表在最近的《物理學評論快報》上。

研究人員解釋說,「海森堡極限可以看作是海森堡不確定性關係的改進變體,適用於量子估計理論和量子計量學。」量子計量學利用量子效應(例如糾纏)來進行高解析度、高靈敏度的測量。在處理包含多個可能糾纏的狀態時,海森堡限制通常會出現在該領域。 「在這裡,海森堡極限表明相對於不使用糾纏的測量方案,定性靈敏度有了提高。」

海森堡不確定性原理可以追溯到海森堡1927年在哥本哈根的研究工作,現在在基於量子理論的文獻和研究中已經根深蒂固。然而,同樣牢固的假設是,可以將量子信息理論(量子費希爾信息)鏈衍生的邊界視為實際限制。

量子費希爾信息(quantum Fisher information)是量子計量學中的核心內容。量子計量學(Quantum metrology)是利用量子理論來描述物理系統,從而對物理參數進行高解析度和高靈敏度測量的研究,特別是利用量子糾纏。

數理統計學中,費希爾信息(Fisher Information)是衡量觀測所得的隨機變量關於未知參數信息量,其中隨機變量的概率分布依賴於該參數。費希爾信息由統計學家羅納德·費希爾提出,現常用於最大似然估計和貝葉斯統計學中。量子費希爾信息是經典費希爾信息的量子類似對應物。

如何了解達到校正的海森堡極限?比如考慮使用一個測量系統的探針來確定一些相關的物理量。在進行測量之前,數量的值是未知的,這是通過為其值分配某種概率分布來表示的。迄今為止使用的海森堡極限是基於「頻率學派推斷」方式的。

頻率學派推斷(Frequentist inference)是一種統計推斷,強調通過數據出現的頻率或比例,從樣本數據中得出結論。它的另一個名稱是頻率學派統計,這是一種推斷的框架,兩種完善的方法統計假設檢驗和置信區間就是以此為基礎的。即只有可重複的隨機事件才被理解為具有概率,該定義排除了假設和固定但未知的值。結果,當將這種方法應用於固定但未知的物理量時,假設測量僅需要在被測量量的精確值的無限小範圍內正常工作。事實證明這一假設是不夠的。

為了重新定義極限,研究人員採用了貝葉斯方法,該方法接受表示任何事件或假設中的不確定性的概率概念,並賦予給定的概率分布,該概率描述了所討論的物理量。研究人員說:「我們在這篇論文中採用的貝葉斯方法通常被認為是一種有趣的方法,但是在某種程度上是人為方法,因為它需要對先驗方法進行任意選擇。」在論文中,研究人員證明了這種方法的一般意義。

當假定參數的值是固定的,即「非隨機參數估計」)時,貝葉斯方法通常遵循的路徑會導致先前定義的海森堡極限。但是,研究人員對模型進行了完善。由於在測量參數之前未知參數的值,因此測量必須在固定區域內進行,從而使該區域具有平坦的先驗。這樣,採用貝葉斯方法不會失去一般性,還能夠排除一些非自然的先驗函數,例如狄拉克δ函數,這可能會導致任意高的精度。

許多人知道,在科學和數學中,狄拉克δ函數是在實數線上定義的一個廣義函數或分布。它在除零以外的點上都等於零,且其在整個定義域上的積分等於1。δ函數有時可看作是在原點處無限高、無限細,但是總面積為1的一個尖峰,在物理上代表了理想化的質點或點電荷的密度。

先前的工作也達到了海森堡極限中π的附加因數,但受到假定的高斯先驗分布的限制,並且不允許通過將測量值饋入將來的測量來獲得更高精度結果的自適應方法。證明需要任意但有限的先驗後,研究人員隨後以其最終的普遍適用結果的方式克服了許多其他挑戰。

海森堡極限與無噪聲系統有關,這很罕見。結果,在方法中,簡單地使用量子費希爾信息來推導標準的「頻率學派推斷」邊界的方法缺乏作為實際極限的理由。無論如何,大多數測量都從未接近極限。

這以研究結果以及它們在量子理論中的基本影響,也可能會影響實際計量的某些領域。在用於估計原子頻率躍遷的頻率估計模型中,以及在鑽石中的氮空位中心的磁力測定等,系統在一定時間長度內探測,而不是在一定數量的光子探測下。

研究人員指出,「在這些設置中,這樣的系統中的噪聲可能足夠低,或者可以通過應用量子糾錯啟發的協議來有效地消除,這是不可想像的,實際的精確縮放與總的詢問時間可能足夠長。但時間不要太長,才能顯示出真正的海森堡極限。」「由於目前對啟發以量子誤差校正為基礎的計量協議的興趣,該協議允許使用海森堡極限比例進行估算,因此這個研究結果可能特別及時。」

參考:Wojciech Górecki et al. π-Corrected Heisenberg Limit, Physical Review Letters (2020)

相關焦點

  • 中國科大同時實現「超海森堡極限」與海森堡極限的量子精密測量
    中國科學院院士、中國科學技術大學教授郭光燦團隊在多參數量子精密測量研究中取得重要實驗進展。
  • 中國科大多參數量子精密測量獲得重要進展:達到海森堡極限最優測量
    來自中國科大的消息顯示,近日,中國科大郭光燦院士團隊李傳鋒、項國勇研究組與香港中文大學袁海東教授在多參數量子精密測量研究中取得重要實驗進展,完全解決了量子比特么正演化算法中三個參數之間的精度制衡問題,實現了三個參數同時達到海森堡極限的最優測量。
  • 「海森堡原理」依然挑戰科學認識的極限
    在大約90年之前,維爾納·海森堡提出了量子世界遵循的「不確定性原理」,在原理發表後的大約90年,三個國家的研究人員組成了一支合作團隊,他們對量子物理學的「海森堡原理」提出了新的見解,第一次用嚴格的數學公式描述海森堡的「不確定性原理」,他們的研究成果取得了實際性的進展,加深了人們對這一原理的理解
  • 【科大新聞】中國科大同時實現「超海森堡極限」與海森堡極限的量子精密測量
    在諸如相位估計、磁力儀和量子陀螺儀等眾多應用中,研究發現k在經典測量方法和量子測量方法中分別是0.5和1,分別被稱作散粒噪聲極限和海森堡極限。然而存在多體相互作用或含時演化的時候,人們發現k可以超越1,稱之為「超海森堡極限」。目前這三種不同的精度極限在單參數量子測量實驗中已經分別得以實現,但是海森堡不確定性關係是量子力學的根本限制,「超海森堡極限」是否真的是超海森堡仍存在爭議。
  • :同時實現「超海森堡極限」與海森堡極限的量子精密測量
    中國科大郭光燦院士團隊在多參數量子精密測量研究中取得重要實驗進展。該團隊李傳鋒、項國勇研究組與香港中文大學袁海東教授在量子精密測量實驗中,首次實現了兩個參數同時分別達到「超海森堡極限」和海森堡極限的最優測量。該研究成果2021年於2月18日在線發表在國際知名期刊《物理評論快報》(Physical Review Letters)上,並被選作該期的封面文章。
  • 華中科大提出量子傳感新方法 為突破海森堡極限測量精度提供可能
    量子科學與技術是二十一世紀的重要研究領域,引領著物質科學和信息技術的巨大變革。量子傳感與精密測量作為量子信息領域的重點研究方向之一,在現實世界有著極富前景的應用。如何利用量子資源突破標準量子極限測量精度是這一研究方向的關鍵科學問題。
  • 我科學家實現三參數同時達到海森堡極限的量子精密測量
    記者中國科學技術大學獲悉,該校郭光燦院士團隊李傳鋒、項國勇研究組與香港中文大學袁海東教授合作,在量子精密測量實驗中同時實現三個參數達到海森堡極限精度的測量,測量精度比經典方法提高13.27分貝。該成果1月1日在線發表於《科學進展》上。
  • 【中國科技網】我科學家實現三參數同時達到海森堡極限的量子精密...
    【中國科技網】我科學家實現三參數同時達到海森堡極限的量子精密測量 記者中國科學技術大學獲悉,該校郭光燦院士團隊李傳鋒、項國勇研究組與香港中文大學袁海東教授合作
  • 海森堡之謎—20世紀科學史上最大的謎題!海森堡真的計算錯誤了嗎
    1923年,海森堡寫出了題為《關於流體流動的穩定和湍流》這篇流體力學的博士論文,詳細研究了非線性理論的近似性,年終取得了慕尼黑大學的哲學博士學位。10月,回到哥廷根,由馬克思· 玻恩私人出資聘請為助教。這時他的主要研究興趣轉到了量子理論。經過一年的努力,海森堡在哥廷根順利通過了申請終身教授職位的資格考試。
  • 【量子物理】海森堡不確定性原理經典解釋被實驗推翻!
    和學生們所學的相反,旁觀者並不總能感覺到量子不確定性。一項新實驗證實,對一個量子系統的測量不一定會導致不確定性。研究推翻了大量關於量子世界為何如此不可知的解釋,但可探測的最小尺度的基本極限仍然不變。海森堡測不準原理是量子力學的一塊基石。簡單地說,這個原理導致我們對量子世界的探索有一個基本的極限。例如,你越是確定某個粒子的位置,就越不能確定它的動量,反之亦然。這個極限被表述為一個方程,在數學上很容易證明。海森堡有時把測不準原理稱為進行測量的一個難題。
  • 量子物理實驗表明,在某種意義上,海森堡「測不準理論」是正確的
    有一種觀點認為,這意味著世界上存在著我們不確定的東西。但是大多數物理學家相信自然本身是不確定的。內在不確定性是德國物理學家、現代量子力學創始人之一維爾納海森堡(Werner Heisenberg)提出這一理論的核心。他提出的測不準原理表明,我們不可能同時知道一個粒子的所有性質。
  • 新技術「繞過」了海森堡不確定性原理!
    洛桑聯邦理工學院、劍橋大學、IBM研究-蘇黎世分校的科學家們一起,揭示了光和機械運動之間相互作用中的新動力學,對旨在規避著名的「反向作用限制」問題中探測器的影響量子測量具有重要意義。近些年來,機械運動的經典測量極限已經超出了預期,例如在第一次直接觀測引力波時,表現為千米級光學幹涉儀中鏡面的微小位移。
  • 新技術「繞過」了海森堡不確定性原理
    洛桑聯邦理工學院、劍橋大學、IBM研究-蘇黎世分校的科學家們一起,揭示了光和機械運動之間相互作用中的新動力學,對旨在規避著名的「反向作用限制」問題中探測器的影響量子測量具有重要意義。近些年來,機械運動的經典測量極限已經超出了預期,例如在第一次直接觀測引力波時,表現為千米級光學幹涉儀中鏡面的微小位移。在微觀尺度上,原子力顯微鏡和磁共振力顯微鏡現在可以揭示材料的原子結構,甚至可以感覺到單個原子的自旋。
  • 「下了一個巨大的量子蛋」的海森堡
    他出生在日耳曼族的一家庭中,父親是語言學家和史學家,在慕尼黑大學擔任希臘語教授,所以海森堡很小的時候就掌握了語言知識,中學時他在普朗克的母校慕尼黑麥克西米學校讀書,他很快喜歡上了數學,希望自己將來成為一名數學家,並掌握了微分學和積分學。大學就讀於慕尼黑大學,跟隨索末菲、維恩等人學習物理學,好來前往哥廷根大學,在玻恩和希爾伯特的指導下學習物理。
  • 海森堡模型能譜研究獲進展
    在個別問題上,我們有嚴格可解模型,但主要集中在一維量子系統。對於二維或更高維的量子多體系統,解析的方法只能提供微擾論意義下的近似,比如量子磁學系統中的自旋波理論和它的高階修正。真正嚴格的計算,還是需要發展數值計算方法。目前為止,許多看似基本的問題,比如反鐵磁海森堡模型的自旋激發譜,人們沒有得到全局性的認識。
  • 海森堡的測不準原理
    海森堡1901 年 12 月,海森堡誕生於德國一個中上階級的學術家庭。孩童時期,他喜歡數學和科技小機件,老師們都認為他極有天賦。1920 年時,他到慕尼黑大學就讀,在大師索末菲(Arnold Sommerfeld)的指導下,兩年內就發表了四篇物理論文。
  • 極限之限:物理學中「突破極限」的幾種途徑 | NSR
    物理研究和體育競技一樣這就像是在公路上有一堵本身就帶有漏洞的破牆,只要選擇合適的技術,就可以突破。>,例如文獻上有一些關於突破海森堡極限、時間帶寬極限、超表面效率極限等方面的報導,在閱讀這類文獻時,需要仔細區分所研究的極限和原始極限是不是定義在同樣的前提條件下
  • 科學網—中科大實驗驗證新形式海森堡不確定原理
    本報訊(記者楊保國) 近日,中國科學院院士、中國科技大學教授郭光燦領導的中科院量子信息重點實驗室李傳鋒研究組,在實驗上突破了量子力學中「經典」的不確定關係,並驗證了新形式的海森堡不確定原理相關研究成果發表在最新一期的《自然·物理》上。 經典的海森堡不確定原理(又名「測不準原理」)認為,在一個量子力學系統中,一個粒子的兩個力學量,比如位置和動量,不能被同時確定。但愛因斯坦等人認為,如果A與B兩個粒子是孿生的,可以同時準確測量A的位置和B的動量,而從B的動量又可以推出A的動量,也就是說可以同時確定A粒子的位置和動量。
  • 新技術「繞過」了海森堡不確定性原理
    洛桑聯邦理工學院、劍橋大學、IBM研究-蘇黎世分校的科學家們一起,揭示了光和機械運動之間相互作用中的新動力學,對旨在規避著名的「反向作用限制」問題中探測器的影響量子測量具有重要意義。近些年來,機械運動的經典測量極限已經超出了預期,例如在第一次直接觀測引力波時,表現為千米級光學幹涉儀中鏡面的微小位移。
  • 新技術「繞過」了海森堡不確定性原理,測不準原理或將被打破!
    -蘇黎世分校的科學家們一起,揭示了光和機械運動之間相互作用中的新動力學,對旨在規避著名的「反向作用限制」問題中探測器的影響量子測量具有重要意義。近些年來,機械運動的經典測量極限已經超出了預期,例如在第一次直接觀測引力波時,表現為千米級光學幹涉儀中鏡面的微小位移。在微觀尺度上,原子力顯微鏡和磁共振力顯微鏡現在可以揭示材料的原子結構,甚至可以感覺到單個原子的自旋。但是使用純粹的常規手段,所能達到的敏感性有限。