人臉識別,是基於人的臉部特徵信息進行身份識別的一種生物識別技術。用攝像機或攝像頭採集含有人臉的圖像或視頻流,並自動在圖像中檢測和跟蹤人臉,進而對檢測到的人臉進行臉部識別的一系列相關技術,通常也叫做人像識別、面部識別。
人臉識別系統的研究始於20世紀60年代,80年代後隨著計算機技術和光學成像技術的發展得到提高,而真正進入初級的應用階段則在90年後期,並且以美國、德國和日本的技術實現為主;人臉識別系統成功的關鍵在於是否擁有尖端的核心算法,並使識別結果具有實用化的識別率和識別速度;「人臉識別系統」集成了人工智慧、機器識別、機器學習、模型理論、專家系統、視頻圖像處理等多種專業技術,同時需結合中間值處理的理論與實現,是生物特徵識別的最新應用,其核心技術的實現,展現了弱人工智慧向強人工智慧的轉化。
傳統的人臉識別技術主要是基於可見光圖像的人臉識別,這也是人們熟悉的識別方式,已有30多年的研發歷史。但這種方式有著難以克服的缺陷,尤其在環境光照發生變化時,識別效果會急劇下降,無法滿足實際系統的需要。解決光照問題的方案有三維圖像人臉識別,和熱成像人臉識別。但這兩種技術還遠不成熟,識別效果不盡人意。
迅速發展起來的一種解決方案是基於主動近紅外圖像的多光源人臉識別技術。它可以克服光線變化的影響,已經取得了卓越的識別性能,在精度、穩定性和速度方面的整體系統性能超過三維圖像人臉識別。這項技術在近兩三年發展迅速,使人臉識別技術逐漸走向實用化。
人臉與人體的其它生物特徵(指紋、虹膜等)一樣與生俱來,它的唯一性和不易被複製的良好特性為身份鑑別提供了必要的前提,與其它類型的生物識別比較人臉識別具有如下特點:
非強制性:用戶不需要專門配合人臉採集設備,幾乎可以在無意識的狀態下就可獲取人臉圖像,這樣的取樣方式沒有「強制性」;
非接觸性:用戶不需要和設備直接接觸就能獲取人臉圖像;
並發性:在實際應用場景下可以進行多個人臉的分揀、判斷及識別;
除此之外,還符合視覺特性:「以貌識人」的特性,以及操作簡單、結果直觀、隱蔽性好等特點。
人臉識別系統主要包括四個組成部分,分別為:人臉圖像採集及檢測、人臉圖像預處理、人臉圖像特徵提取以及匹配與識別。
人臉圖像採集及檢測
人臉圖像採集:不同的人臉圖像都能通過攝像鏡頭採集下來,比如靜態圖像、動態圖像、不同的位置、不同表情等方面都可以得到很好的採集。當用戶在採集設備的拍攝範圍內時,採集設備會自動搜索並拍攝用戶的人臉圖像。
人臉檢測:人臉檢測在實際中主要用於人臉識別的預處理,即在圖像中準確標定出人臉的位置和大小。人臉圖像中包含的模式特徵十分豐富,如直方圖特徵、顏色特徵、模板特徵、結構特徵及Haar特徵等。人臉檢測就是把這其中有用的信息挑出來,並利用這些特徵實現人臉檢測。
主流的人臉檢測方法基於以上特徵採用Adaboost學習算法,Adaboost算法是一種用來分類的方法,它把一些比較弱的分類方法合在一起,組合出新的很強的分類方法。
人臉檢測過程中使用Adaboost算法挑選出一些最能代表人臉的矩形特徵(弱分類器),按照加權投票的方式將弱分類器構造為一個強分類器,再將訓練得到的若干強分類器串聯組成一個級聯結構的層疊分類器,有效地提高分類器的檢測速度。
人臉圖像預處理
人臉圖像預處理:對於人臉的圖像預處理是基於人臉檢測結果,對圖像進行處理並最終服務於特徵提取的過程。系統獲取的原始圖像由於受到各種條件的限制和隨機幹擾,往往不能直接使用,必須在圖像處理的早期階段對它進行灰度校正、噪聲過濾等圖像預處理。對於人臉圖像而言,其預處理過程主要包括人臉圖像的光線補償、灰度變換、直方圖均衡化、歸一化、幾何校正、濾波以及銳化等。
人臉圖像特徵提取
人臉圖像特徵提取:人臉識別系統可使用的特徵通常分為視覺特徵、像素統計特徵、人臉圖像變換係數特徵、人臉圖像代數特徵等。人臉特徵提取就是針對人臉的某些特徵進行的。人臉特徵提取,也稱人臉表徵,它是對人臉進行特徵建模的過程。人臉特徵提取的方法歸納起來分為兩大類:一種是基於知識的表徵方法;另外一種是基於代數特徵或統計學習的表徵方法。
基於知識的表徵方法主要是根據人臉器官的形狀描述以及他們之間的距離特性來獲得有助於人臉分類的特徵數據,其特徵分量通常包括特徵點間的歐氏距離、曲率和角度等。人臉由眼睛、鼻子、嘴、下巴等局部構成,對這些局部和它們之間結構關係的幾何描述,可作為識別人臉的重要特徵,這些特徵被稱為幾何特徵。基於知識的人臉表徵主要包括基於幾何特徵的方法和模板匹配法。
人臉圖像匹配與識別
人臉圖像匹配與識別:提取的人臉圖像的特徵數據與資料庫中存儲的特徵模板進行搜索匹配,通過設定一個閾值,當相似度超過這一閾值,則把匹配得到的結果輸出。人臉識別就是將待識別的人臉特徵與已得到的人臉特徵模板進行比較,根據相似程度對人臉的身份信息進行判斷。這一過程又分為兩類:一類是確認,是一對一進行圖像比較的過程,另一類是辨認,是一對多進行圖像匹配對比的過程。
人臉識別的優勢
人臉識別的優勢在於其自然性和不被被測個體察覺的特點。
所謂自然性,是指該識別方式同人類(甚至其他生物)進行個體識別時所利用的生物特徵相同。例如人臉識別,人類也是通過觀察比較人臉區分和確認身份的,另外具有自然性的識別還有
語音識別、體形識別等,而指紋識別、虹膜識別等都不具有自然性,因為人類或者其他生物並不通過此類生物特徵區別個體。
不被察覺的特點對於一種識別方法也很重要,這會使該識別方法不令人反感,並且因為不容易引起人的注意而不容易被欺騙。人臉識別具有這方面的特點,它完全利用可見光獲取人臉圖像信息,而不同於指紋識別或者虹膜識別,需要利用電子壓力傳感器採集指紋,或者利用紅外線採集虹膜圖像,這些特殊的採集方式很容易被人察覺,從而更有可能被偽裝欺騙。
發展問題
人臉識別被認為是生物特徵識別領域甚至人工智慧領域最困難的研究課題之一。人臉識別的困難主要是人臉作為生物特徵的特點所帶來的。
1、相似性
不同個體之間的區別不大,所有的人臉的結構都相似,甚至人臉器官的結構外形都很相似。這樣的特點對於利用人臉進行定位是有利的,但是對於利用人臉區分人類個體是不利的。
2、易變性
人臉的外形很不穩定,人可以通過臉部的變化產生很多表情,而在不同觀察角度,人臉的視覺圖像也相差很大,另外,人臉識別還受光照條件(例如白天和夜晚,室內和室外等)、人臉的很多遮蓋物(例如口罩、墨鏡、頭髮、鬍鬚等)、年齡等多方面因素的影響。
在人臉識別中,第一類的變化是應該放大而作為區分個體的標準的,而第二類的變化應該消除,因為它們可以代表同一個個體。通常稱第一類變化為類間變化(inter-class difference),而稱第二類變化為類內變化(intra-class difference)。對於人臉,類內變化往往大於類間變化,從而使在受類內變化幹擾的情況下利用類間變化區分個體變得異常困難。
應用前景
生物識別技術已廣泛用於政府、軍隊、銀行、社會福利保障、電子商務、安全防務等領域。例如,一位儲戶走進了銀行,他既沒帶銀行卡,也沒有回憶密碼就徑直提款,當他在提款機上提款時,一臺攝像機對該用戶的眼睛掃描,然後迅速而準確地完成了用戶身份鑑定,辦理完業務。這是美國德克薩斯州聯合銀行的一個營業部中發生的一個真實的鏡頭。而該營業部所使用的正是現代生物識別技術中的「虹膜識別系統」。此外,美國「9.11」事件後,反恐怖活動已成為各國政府的共識,加強機場的安全防務十分重要。美國維薩格公司的臉像識別技術在美國的兩家機場大顯神通,它能在擁擠的人群中挑出某一張面孔,判斷他是不是通緝犯。
當前社會上頻繁出現的入室偷盜、搶劫、傷人等案件的不斷發生,鑑於此種原因,防盜門開始走進千家萬戶,給家庭帶來安寧;然而,隨著社會的發展,技術的進步,生活節奏的加速,消費水平的提高,人們對於家居的期望也越來越高,對便捷的要求也越來越迫切,基於傳統的純粹機械設計的防盜門,除了堅固耐用外,很難快速滿足這些新興的需求:便捷,開門記錄等功能。人臉識別技術已經得到廣泛的認同,但其應用門檻仍然很高:技術門檻高(開發周期長),經濟門檻高(價格高)。
人臉識別產品已廣泛應用於金融、司法、軍隊、公安、邊檢、政府、航天、電力、工廠、教育、醫療及眾多企事業單位等領域。隨著技術的進一步成熟和社會認同度的提高,人臉識別技術將應用在更多的領域。
1、企業、住宅安全和管理。如人臉識別門禁考勤系統,人臉識別防盜門等。
2、電子護照及身份證。中國的電子護照計劃公安部一所正在加緊規劃和實施。
3、公安、司法和刑偵。如利用人臉識別系統和網絡,在全國範圍內搜捕逃犯。
4、自助服務。
5、信息安全。如計算機登錄、電子政務和電子商務。在電子商務中交易全部在網上完成,電子政務中的很多審批流程也都搬到了網上。而當前,交易或者審批的授權都是靠密碼來實現,如果密碼被盜,就無法保證安全。但是使用生物特徵,就可以做到當事人在網上的數字身份和真實身份統一,從而大大增加電子商務和電子政務系統的可靠性。