Bai Lab早報:骨細胞缺失引發骨質疏鬆且使應力傳導受損

2021-02-25 骨生物學

小編說在前面的話:Bone remodeling is performed by osteoclasts and osteoblasts at the bone surface. Inside of bone is a network of numerous osteocytes, whose specific function has remained an enigma.

小編看到「enigma」這個單詞想到了一個很有趣的事情,相關故事附在了文末作為驚喜(請務必先閱讀文獻,勿直接跳到文末尋找答案,不然小心「驚喜」變「驚嚇」哦!)。

發表情況:

Cell Metabolism.2007 Jun; 5(6):464-75

Targeted ablation ofosteocytes induces osteoporosis with defective mechanotransduction.

Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M, Takeshita S, Ikeda K.

Abstract

Bone remodeling is performed by osteoclasts andosteoblasts at the bone surface. Inside of bone is a network of numerousosteocytes, whose specific function has remained an enigma. Here we describe atransgenic mouse model in which inducible and specific ablation of osteocytes isachieved in vivo through targeted expression of diphtheria toxin (DT) receptor.Following a single injection of DT, approximately 70%–80% of the osteocytes,but apparently no osteoblasts, were killed. Osteocyte-ablated mice exhibited fragilebone with intracortical porosity and microfractures, osteoblastic dysfunction, andtrabecular bone loss with microstructural deterioration and adipose tissue proliferationin the marrow space, all of which are hallmarks of the aging skeleton.Strikingly, these 『『osteocyte-less』』 mice were resistant to unloading-inducedbone loss, providing evidence for the role of osteocytes inmechanotransduction. Thus, osteocytes represent an attractive target for thedevelopment of diagnostics and therapeutics for bone diseases, such asosteoporosis.

摘要

眾所周知,骨重構是由成骨細胞和破骨細胞在骨表面進行的,而存在於骨組織內部大量的骨細胞的功能是尚未可知的。在本研究中,通過特異性表達白喉毒素(DT) 受體,我們構建了一種特異性缺失骨細胞的可誘導小鼠模型。單次注射DT,約70%-80%的骨細胞發生消亡,但成骨細胞不受影響。骨細胞消亡的小鼠表現出骨骼老化的特性,即骨脆性增加、骨內部存在孔隙並伴有微小骨折、成骨功能障礙、骨小梁丟失、骨髓間隙超微結構退化和脂肪組織增生。令人驚奇的是,這種「骨細胞減少」的小鼠可以抵抗卸荷導致的股丟失,提示骨細胞在應力傳導過程中扮演重要角色。總之,骨細胞為骨相關疾病如骨質疏鬆症的診斷和治療提供了一個非常有潛力的靶標。

圖一、骨細胞特異性表達DT受體的轉基因小鼠模型的構建

(A)轉基因結構原理圖,(B)RT-PCR檢測靶基因(DT—R)表達情況,可見在骨和牙本質有表達,(C-E)免疫組織化學檢測8周齡轉基因小鼠股骨DT——R表達情況,可見在骨小梁(C)和骨表面(D)的骨細胞中有陽性染色,(E)圖為高倍鏡下的典型陽性細胞。該圖表明轉基因小鼠模型在基因、蛋白層面是構建成功的,且只在骨細胞中特異表達靶基因。

Figure 1.Generation of Transgenic Mice Expressing DT-R Specifically in Osteocytes

(A) Schematicrepresentation of the transgenic construct (pDTR-9.6kb). Diphtheria toxinreceptor (DT-R, dotted box) with poly(A) signals (dark box) was placed underthe control of the 9.6 kb mouse DMP1 promoter (thick line) plus exons 1 and 2(white bars) and intron 1 between them. The arrows indicate the set of primersused for confirming integration of the transgene (one in exon 2 of the DMP1gene, and the other in the DT-R cDNA). (B) RT-PCR analysis of transgene (DT-R)expression in DTR-9.6kb transgenic line #2. RNA for bone and dentin wasprepared from tibiae/femurs and incisors, respectively.(C–E)Immunohistochemical detection of the transgene product, DT-R, by anti-DT-R(hHB-EGF) antibody in osteocytes of trabecular (C) and cortical bone (D) of thefemur of an 8-week-old transgenic mouse. (GP, growth plate; TB, trabecularbone; CB, cortical bone.) Representative osteocytes with prominent staining areindicated by black arrows. A high magnification of a trabecula reveals thatosteoblasts on the surface do not express DT-R (redarrows in [E]).

圖二、轉基因小鼠中骨細胞發生消亡

(A)選取10周齡的雌鼠,WT組注射PBS,Tg組注射50μg/kg劑量的DT,8天後取材,H&E染色股骨皮質,只有注射DT的轉基因小鼠骨皮質有空隙;(B—E)電鏡分析骨細胞形態,來自WT組的正常形態骨細胞(B),來自DT組的異常骨細胞,核凝結(C)、破碎(D)和空泡化(E);(F)DT注射前/後空泡化(紅色)、凋亡(黃色)和正常(藍色)骨細胞計數分析;(G)DT注射36小時後凋亡染色。

該圖表明注射DT前,轉基因小鼠的骨細胞正常;注射DT後,轉基因小鼠的骨細胞的確發生了消亡。

Figure 2.TargetedAblation ofOsteocytes in Transgenic Mice (A) Ten-week-old malewild-type (WT, upper panels) and transgenic (Tg, lower panels) mice were injectedi.p. with PBS (left panels) or 50 mg/kg body weight DT (right panels), andfemoral cortical bone was stained with hematoxylin and eosin at 8 days post DTtreatment.Note that empty lacunae are observed only in cortical bone oftransgenic mice injected with DT (arrows). Scale bars = 50 mm. (B–E) Osteocytemorphology by electron microscopy showing a normal osteocyte (B), osteocytes withnuclear condensation (C) or fragmentation (D), and an empty lacuna (E) fromwild-type mice (B) or transgenic mice injected with DT (C–E) at 8 days. (F)Numbers of empty lacunae (red), lacunae with apoptotic osteocytes (yellow), andlacunae with normal osteocyte morphology (blue) were counted in femoralcortical bone from WT and Tg miceat 8 days following injection of PBS or DT. Mean values are shown as a percentageof all lacunae (n = 3–6). (G) TUNEL staining (arrows) of femoral sections of WTand Tg mice 36 hr after DT administration.

圖三、骨細胞消亡後產生的短期效應

(A)H&E染色顯示:DT注射8d後,股骨皮質骨出現空隙(箭形指示),且有血管入侵;TRAP(B)、ALP(C)和von Kossa(D)染色,(B)中的箭頭和星號分別表示空腔和內腔。(D)中紅色箭頭和白色箭頭所示的藍色染色分別表示內骨表面和腔內壁上的類骨組織;(E)電子顯微鏡顯示:骨細胞消亡後後出現的微骨折(黃色箭頭),紅色箭頭表示裂紋中的紅細胞,星號表示空腔;(F)脛骨近端小梁骨處,骨表面的骨樣表面分數(os/bs)分析;(G)骨細胞消融後8天,脛骨近端micro-CT測定骨小梁體積/體積(BV/TV)不變;(H)骨細胞消融後8天,TRAP染色;(I)注射PBS/DT7天後,股骨骨形成的組織形態計量學相關指標—骨表面成骨細胞(ob.s)和骨形成率(Bfr)分析。

Figure 3. Short-Term Effects ofOsteocyte Ablation (A) Histological analysis of hematoxylin-andeosin- stainedsections of femurs from 10- week-old WT (left) and Tg (right) mice at 8 daysafter a single injection of DT. Note the empty lacunae (arrows) andintracortical cavities with vascular invasion. (BV in inset, blood vessel.)(B–D) TRAP (B), ALP (C), and von Kossa (D) staining of femurs of WT (left) andTg (right) mice injected with DT. Arrows and the asterisk in (B) indicate emptylacunae and intracortical cavities, respectively. The blue staining shown bythe red arrows and white arrows in (D) indicates osteoid on the endostealsurface and on the wall of intracorticalcavities, respectively. (E) The presence of microfractures (yellow arrows)following osteocyte ablation as revealed by electron microscopy. Red arrowsindicate red blood cells in the cracks. The asterisk indicates an empty lacuna.Magnification 1000x. (F) Osteoid surface fraction per bone surface (OS/BS)measured at the trabecular bone of the proximal tibia. In this and all otherfigures, error bars indicate ±SEM. *p < 0.05 (n = 5) (G) Trabecular bonevolume/tissue volume (BV/TV) in the proximal tibia as determined by micro-CTwas unchanged at 8 days following osteocyte ablation. (H) TRAP staining of thetrabecular bone of WT (left) and Tg (right) mice at 8 days after DTadministration. (I) Histomorphometric indices of bone formation in the femur at7 days after injection of DT or PBS in 10-week-old WT or Tg mice. Osteoblastsurface (Ob.S) and bone formation rate (BFR) were corrected for bone surface(BS). MAR, mineral apposition rate; Mlt, mineralization lag time. **p < 0.01(n = 3 per group).

圖四、定量RT—PCR分析骨細胞相關的分子標記物表達情況。

結果顯示:DT-R、DMP1、FGF-23、SOST、MEPE、Phex、E11/gp38顯著降低,RunX2無明顯差異。

Figure 4. Quantitative RT-PCRAnalysis of Molecular Markers of Bone Cells After the bone marrow had beenflushed out, RNA was extracted from the femurs and tibiae of 10-week-oldDTR-9.6kb transgenic mice injected with PBS (white bars) or DT (black bars) at2 days. Gene expression was assessed by real-time PCR using a LightCyclersystem and normalized to EF-1a mRNA. MEPE, matrix extracellularphosphoglycoprotein; Phex, phosphate-regulating gene with homologies to endopeptidaseson the X chromosome; RANKL, receptor activator of NF-kB ligand; OPG,osteoprotegerin; ALP, alkaline phosphatase; OC, osteocalcin. **p < 0.01; *p< 0.05 (n = 3 mice per group).

圖五、骨細胞消融後產生的長期效應

(A和B)18周齡的小鼠,單次注射PBS/DT 40天後,H&E染色顯示:骨細胞消融後皮質骨的變薄和脂肪組織在骨髓間隙的積聚;(B)圖為(A)圖中的部分皮質骨,箭頭指示內部孔隙;(C和D)注射PBS/DT 40d後,股骨皮質內孔隙面積(po.ar/ct.ar)(C)和骨髓脂肪體積(%脂肪體積/骨髓體積)(D)的分析;(E、F和G)micro-CT掃描結果分析及三維重構;(H)注射40d和90d後骨強度分析。

Figure 5. Osteoporotic Changes asLong-Term Consequences of Osteocyte Ablation (A and B) Representative tibial sectionsof 18-week-old WT and Tg mice at 40 days following a single DT administration.Note the thinning of the cortical bone and accumulation of adipose tissue inthe marrow space following osteocyte ablation. Scale bars = 200 mm. Part of thecortical bone in (A) is highlighted in (B) to illustrate intracortical porosity(arrows). (C and D) Intracortical porosity area per cortical area (Po.Ar/Ct.Ar)(C) and marrow adiposity (% fat volume/marrow volume) (D) of femurs at 40 daysafter DT administration. **p < 0.01 (n = 5–6 per group). (E and F) Representativemicro-CT images of lumbar vertebrae of WT and Tg mice at 40 days following DTadministration (E) with microstructural parameters (BV/TV, 3D bone volumefraction per tissue volume; Conn-Dens., connectivity density; SMI, structuremodel index; Tb.Th, trabecular thickness) derived from micro-CT analysis (F).**p < 0.01 (n = 5 per group). (G and H) Recovery of bone volume (G) and bonestrength (H) along with osteocyte regeneration. Trabecular bone volume and bonestrength were determined by micro-CT and the four-point bending test,respectively, on the femurs of transgenic mice injected with PBS (white bars)or DT (black bars) at 40 and 90 days. *p < 0.05; **p < 0.01 (n = 5 per group).

圖六、骨細胞缺失可以抵抗卸荷引起的骨量丟失

(A)micro-CT掃描時間點示意圖,尾吊模型模擬卸荷作用,正常生活的即為對照,在尾吊前一天注射DT;(B)尾吊7天後脛骨幹骺端三維骨體積的變化情況;(C)破骨細胞數(n.oc/bs)和骨形成率(BfR/bs)在尾吊和不尾吊小鼠中的情況分析;(D)定量RT-PCR分析RANKL、OPG和SOST表達情況。

Figure 6. Osteocyte-Ablated MiceAre Resistant to Unloading-Induced Bone Loss (A) Experimental schedule withrepresentative micro-CT images. Eighteen-week-old WT and Tg mice were subjectedto skeletal unloading by tail suspension (TS) for 7 days. Mice on the ground(Gr) served as controls. DT was administered 1 day prior to the initiation ofTS (_1). (B) Changes in 3D bone volume at the tibialmetaphysis following 7 day unloading by tail suspension (black bars). Mice onthe ground (white bars) served as controls. **p < 0.01 (n = 5 per group). (C)Number of osteoclasts (N.Oc/BS) and bone formation rate (BFR/BS) in TS (blackbars) and ground control (white bars) mice. *p < 0.05 (n = 5 per group). (D)Quantitative RT-PCR analysis. RNA was extracted from tibiae and femurs of WTand DTR-9.6kb Tg mice injected with DT (red bars) or PBS (pale green bars) at 3days following the initiation of TS, after bone marrow had been flushed out.Transgenic mice on the ground (Gr) served as controls (white and black bars).*p < 0.05; **p < 0.01 (n = 3 per group).

圖七、恢復負荷後,骨細胞缺失不能引起骨量增加。

小鼠卸荷—尾吊處理7天後再去除尾吊,14天以後觀察,(A)圖示意4個分組間的不同處理及三維重構情況;(B和C)不同分組間組織形態計量學指標(Bs)分析,小鼠脛骨幹骺端三維骨體積的變化情況(B)、破骨細胞數目(n.oc)和骨形成率(BfR);(D)根據本研究的結果,在不同應力條件下骨細胞的作用不同。在正常機械負荷條件下,骨細胞具有維持破骨細胞(Oc)的骨吸收,成骨細胞(Ob)礦化的功能。當骨細胞發生消亡時,骨吸收異常升高與礦化受損。當應力缺失時,骨細胞刺激骨吸收、抑制骨形成,短期內即可引起明顯的骨丟失和微結構惡化;而若應力缺失且骨細胞消融時,這些變化就不會發生,骨細胞可以抵抗應力缺失引起的骨質疏鬆。不過,而重新加載應力後,據本研究的結果提示,破骨細胞(Occ)和成骨細胞(Ob)對再負荷刺激做出的反應是可以繞過骨細胞,此時骨細胞是非必須的,恢復應力刺激後可以逆轉骨吸收的增加和骨形成的抑制。

Figure 7. Absence of OsteocytesDoes Not Affect Bone Gain during Reloading (A) Experimental schedule forreloading after tail suspension (TS/Gr) and representative micro-CT images. Eighteen-week-oldWT and DTR-9.6kb Tg mice were subjected to TS for 7 days and were then leftambulatory for the following 14 days. DT (4) or PBS as vehicle (3) was injectedbefore initiation of reloading so that osteocytes were ablated specificallyduring the reloading period (4). Mice on the ground throughout the experimentalperiod (1) and mice subjected to TS only (2) served as controls. (B and C)Changes in 3D bone volume at the tibial metaphysis of WT and Tg mice with orwithout DT administration (B) and histomorphometric indices for osteoclastnumber (N.Oc) and bone formation rate (BFR) corrected for bone surface (BS) (C)after reloading (TS/Gr). **p < 0.01; *p < 0.05 (n = 5 per group). (1)–(4)correspond to the four experimental groups shown in (A). (D) Proposed roles ofosteocytes under different mechanical conditions. Based on the current results,under normal loading conditions (Mechanical input +), osteocytes function tokeep osteoclastic (Oc) bone resorption in check and to maintain mineralizationby osteoblasts (Ob). Thus, when osteocytes are ablated, aberrantly elevatedbone resorption with impaired mineralization takes place. In response tounloading (Mechanical input _), osteocytes executethe stimulation of bone resorption and suppression of bone formation, resultingin marked bone loss and microstructural deterioration in a short period. Thus,when osteocytes are ablated specifically during tail suspension, those changesdo not take place, and bone is resistant to disuse-induced atrophy. However,based on the results of the reloading experiments following unloading(Mechanical input _/+), it is suggested that osteocytes are dispensable forthis recovery phase and that osteoclasts (Oc) and osteoblasts (Ob) respond tothe reloading stimulus, bypassing osteocytes, with reversal of elevated boneresorption and release from suppressed bone formation, respectively.

文末驚喜

小編其實是想推薦大家看看天才科學家的傳奇人生,一個人物傳記電影——《模仿遊戲》,改編自安德魯·霍奇斯編著的《艾倫·圖靈傳》,上映後獲第87屆奧斯卡最佳改編劇本獎。

電影由你們最愛的「卷福」本尼迪克特·康伯巴奇飾演主角—圖靈……

電影及人物關鍵詞:二戰德國著名的密碼系統Egnima」、劍橋大學、普林斯頓大學、計算機科學之父、人工智慧之父、 「圖靈實驗」、「圖靈獎」—計算機界的諾貝爾獎、首相致歉、女王赦免、同性戀……



相關焦點

  • DNA甲基化在運動幹預骨質疏鬆中的作用機制
    經典Wnt/β-catenin通路:Wnt蛋白與膜受體捲曲蛋白結合,經過一系列蛋白的相互作用,使β-catenin穩定沉聚,並在細胞核內對T細胞轉錄因子和淋巴增強因子發生作用,通過啟動Runx2及下遊基因Osx、遠端缺失同源盒基因5等的表達來促進成骨細胞分化、成熟。
  • 糖皮質激素性骨質疏鬆致病機制最新研究進展
    生理水平的GC可以調節電解質、體液穩態和免疫應激反應等,對於組織的生長發育是必要的,GC受體(GR)廣泛缺失的小鼠導致出生後早期死亡,細胞特異性GC信號的缺失導致了對GC在骨組織生理作用的中斷。GR表達水平和配體結合的親和性可以影響GC在組織中發揮的作用。
  • The FASEB Journal:線粒體損傷與骨質疏鬆之間的關係
    2019年5月11日 訊 /生物谷BIOON/ --此前研究表明吸菸,飲酒,服用某些藥物或接觸環境汙染物會導致骨質疏鬆的發生。但到目前為止,研究人員尚未對這些暴露如何與骨質流失聯繫起來。由賓夕法尼亞大學獸醫學院的研究人員領導的一項新研究揭示了這些因素與骨質疏鬆症可能相關的機制。
  • 【世界骨質疏鬆日】骨質疏鬆知多少
    ,其目的是對社會大眾普及有關骨質疏鬆症的知識,以預防和減少骨質疏鬆性骨折的發生。 人的骨骼一直處在一個動態的平衡過程,這個過程是靠功能完全相反的兩種細胞來完成的,成骨細胞負責生成新骨,破骨細胞負責吸收舊骨。隨著年齡的老化,尤其是女性性激素雌激素水平的下降,具有成骨細胞的功能不斷退化,而具有吸收功能的破骨細胞繼續不斷吸收,逐漸導致骨骼強度下降,出現骨質疏鬆。
  • Cell子刊:促骨形成又抑骨吸收 研究發現抗骨質疏鬆藥新靶標!
    目前市場上大多數抗骨質疏鬆的藥物可以抑制骨吸收,但很少有合成代謝藥物可以促進骨形成,且多數具有心血管疾病風險增加等副作用。因此急需深入了解骨骼發育和再生的機制,開發出更有效且無副作用的抗骨質疏鬆藥物。進一步研究發現,Fap是一種脯氨酸特異性的絲氨酸蛋白酶,與Osteolectin的表達模式相似,高表達於軟骨細胞、骨髓間充質幹細胞(BMSC)和成骨細胞等,此外,Osteolectin能夠顯著抑制Fap的蛋白酶活性。
  • 調控骨質疏鬆模型小鼠的ERK5蛋白信號通路
    有研究表明XMD8-92在肺癌、宮頸癌和胰腺腫瘤動物模型中能夠阻斷ERK5的活化,顯著抑制腫瘤生長,不過尚未見在骨質疏鬆症的研究中有過報導。背景:雖然ERK5對於成骨細胞的生存、增殖和分化十分重要,但其對於骨組織骨代謝平衡的具體作用還不清楚。
  • ...作用_腎素-血管緊張素系統_骨質疏鬆_骨關節炎_椎間盤退變_醫脈通
    Nakai等報導,AngⅡ通過增加ROS17/2.8細胞(成骨細胞)中AT1R來促進MMP-3和MMP-13產生,通過降低鹼性磷酸酶活性及促進細胞外信號調節激酶(ERK)-1/2、p38絲裂原活化蛋白激酶(MAPK)信號通路磷酸化來促進細胞增殖,或通過激活ROS17/2.8細胞中應激活化蛋白激酶/c-Jun氨基末端激酶(SAPK/JNK)信號通路來實現這一效應,從而刺激類骨細胞ECM降解,促進骨質疏鬆發生
  • 世界骨質疏鬆日:關於骨質疏鬆,專家告訴你不知道的「真相」
    ,據不完全統計,我國有近1億人患有不同程度的骨質疏鬆症,但高發病率的背後,骨質疏鬆症的危害卻一直未得到充分重視。雙鯨藥業首席醫藥顧問柴雨力博士"隨著骨質的流失,患者的骨骼會像風化的石頭一樣變得稀疏鬆脆,年紀一大稍一用力就發生骨折,且肌肉關節持續疼痛、關節畸形變得駝背,身形'縮水',嚴重者因髖部、腰椎等骨折而臥床不起,引發呼吸系統和心腦血管系統並發病而死亡(被稱為老年人最後一次'骨折')。"柴雨力博士說道。
  • MAPK信號通路與骨質疏鬆關係的研究進展
    MAPK通路在1,25(OH)2D3調節成骨細胞分化和礦化,改善骨質疏鬆中發揮的作用還不完全清楚。BMPs和TGF-β同時調控成骨細胞和破骨細胞的分化和功能,平衡骨形成及骨吸收。TGF-β/BMPs傳導通過經典的Smad信號通路和非經典的P38信號通路在骨形成中發揮重要作用,這兩條通路共同調控Runx2基因表達控制骨髓間充質幹細胞向成骨細胞分化。與此相反,SukyeeKwok等研究表明TGF-β1通過激活ERK和MAPK通路磷酸化Runx2,抑制骨鈣素表達,對成骨前體細胞分化發揮抑制作用。
  • 「星醫百」減肥能增加骨質量,或成新的抗骨質疏鬆治療策略
    更有意義的是,了解脂肪細胞的產物控制骨細胞的機制可能會發現新的抗骨質疏鬆治療策略。DOI:https://doi.org/10.1016/j.cmet.2020.09.011 研究團隊之前已經證明,通過在脂肪中表達白喉毒素受體(DTR),使白色(WAT)和棕色脂肪組織(BAT)的種系缺失
  • 你知道影響骨質疏鬆有哪些因素嗎?醫生告訴您
    骨質疏鬆是現代老年人經常面臨的一種病患類型,其中50歲以上男性中,骨質疏鬆的發病率在25%以上,而女性群體的發病機率也到了20%左右。骨質疏鬆不僅嚴重破壞著我們的骨骼健康,同時引發的一些脆性骨折狀況,也讓患者飽受莫大痛苦的同時,影響著正常工作和生活。
  • 自噬在骨穩態與骨質疏鬆症中的作用及機制研究進展
    生理情況下,細胞自噬可以將受損或者衰老的細胞器清除、更新來維持細胞穩態。當細胞處於營養物質缺乏,或者應激狀態(如藥物作用、氧化應激、內質網應激等)下,細胞內自噬水平會升高,各種刺激引起的細胞器損傷及時被消除,細胞的正常新陳代謝和多種生理功能得以維持。
  • 骨質疏鬆為何偏愛女性?降低骨質疏鬆患病機率這樣做
    骨質疏鬆,即單位體積內骨組織量減少的代謝性骨性病變,好發於中老年群體,其中絕經後的女性更容易受此病的「偏愛」,被「偏愛」的原因主要有哪些呢?骨質疏鬆還容易引發骨折損傷,給生活帶來諸多不便,為避免這種情況出現,又該如何進行有效預防呢?
  • 老年人骨質疏鬆的發病原因是什麼?
    老年人骨質疏鬆的發病原因是什麼?   (一)發病原因  影響峰骨量的因素有以下4個面:  1.遺傳 峰骨量的高低與遺傳因素有關。①種族:高加索人與亞洲人的峰骨量較低,因而患骨質疏鬆症的危險性更大。
  • ...骨質疏鬆症日(2020.10.20),為大家盤點可導致骨質疏鬆的藥物。
    二、甲狀腺激素過量的甲狀腺激素可影響正常的骨代謝,通過抑制成骨細胞活性、促進破骨細胞的形成和分泌、影響鈣磷代謝引起骨質疏鬆,最終導致骨量的丟失。並且在不同的甲狀腺疾病中,發生骨質疏鬆的機制是不同的。因此,甲狀腺激素替代治療時,要慎之又慎。
  • 臨床筆記丨骨質疏鬆症治療藥物一覽
    骨質疏鬆症已成為一個日益嚴重的公共衛生問題。曾經被認為是衰老的必然結果,現在發現完全可以預防和治療。現對骨質疏鬆症傳統治療及最新藥物進行梳理,以期為骨質疏鬆症的防治提供借鑑和幫助。雌激素類藥物適用於絕經婦女骨質疏鬆症的預防,其應用至今已有70多年歷史,公認雌激素對骨具有保護作用。雌激素替代療法經歷了只給予雌激素,聯合使用孕激素和組織特異性雌激素替代療法應用三個發展階段。採用雌激素治療骨質疏鬆症,可與骨組織中的雌激素受體有效結合,促使骨細胞增多,但長期採用雌激素治療,容易誘髮乳腺癌、心腦血管疾病。
  • 你為啥會得骨質疏鬆?這些原因完全想不到!
    重點介紹如下幾種:糖尿病和骨質疏鬆症數據表明,1/2-2/3的糖尿病患者伴有骨密度(BMD)下降,1/3的患者符合骨質疏鬆症的診斷標準。1型糖尿病所有患者均存在骨量丟失,且與病程呈正相關,2型糖尿病大多數患者存在骨量丟失,與2型糖尿病所特有的胰島素敏感性下降,同時也影響蛋白質的正常代謝,使骨基質合成減少。
  • 2件事是骨質疏鬆「剋星」,補鈣排最後,若你做到,骨質疏鬆不敢來
    骨質疏鬆,最常見的症狀就是骨折,一旦出現骨折之後,那麼不僅會導致身體早早的失去了勞動能力,而且也會引發自殘或者是死亡的概率,所以在生活中一定要及時的改善和糾正一些不良的生活因素,以免發生骨質疏鬆之後後悔莫及。
  • 成骨細胞特異因子2基因家族的全基因組鑑定、分類及進化分析
    目的:探討成骨細胞特異因子基因家族的進化歷史,對成骨細胞特異因子基因家族的保守結構、蛋白特性、系統發育關係進行系統的比較分析。結果與結論:①在魚類(斑馬魚)、兩棲類(非洲爪蟾)、鳥類(雞)、爬行類(中華鱉)、哺乳類(大鼠和小鼠)和靈長類(黑猩猩和人)等8個物種中,各檢索出5,5,4,5,5,4,4,4個成骨細胞特異因子候選基因;②通過對成骨細胞特異因子基因在8個物種中的系統發育分析