...鐵電極化場對低維半導體材料精準摻雜並構建多種電子和光電子器件

2021-01-15 東方財富網

近年來,新型低維材料出現,其獨特結構和奇異物性備受關注,已在電子和光電子器件等領域顯現出其潛在的價值。

通過元素摻雜來調控半導體材料載流子類型及濃度是構建半導體功能器件的物理基礎。具體到新型低維半導體材料,如何實現對其載流子的精準調控,同樣是實現其豐富功能器件的必經之路。

近日,中國科學院上海技術物理研究所研究人員與復旦大學、南京大學、南京大學、華東師範大學及中科院微電子研究所的相關團隊通力合作,提出了利用非易失性的鐵電極化場對低維半導體材料的精準摻雜的新方法,並運用該方法構建了多種新型功能的電子和光電子器件。

研究人員提出了兩種利用鐵電極化調控構建低維半導體光電器件方法:

其一、通過納米探針技術極化鐵電薄膜,進而調控其覆蓋的低維半導體(自上而下方法)。加正向電壓,極化向下,半導體材料中注入電子;加負向電壓,極化向上,半導體材料中注入空穴。其特徵在於器件圖案可任意編輯、可擦除重新寫入、摻雜區域的空間尺寸精確,基於此方法研究人員構建了 p-n 結、BJT 電晶體及新型存儲等器件。

其二、構建裂柵結構,通過固態電極施加電壓極化鐵電薄膜,進而調控頂層低維半導體(自下而上)。其特點是實現了固態結構,極化充分,器件性能及穩定性更佳。運用上述兩種技術途徑,皆可實現結型光電探測器及光伏器件,器件探測波長可覆蓋可見 - 短波紅外波段。

該鐵電極化場調控低維半導體載流子的方法,為低維半導體功能化應用提供了新技術途徑。相關研究成果相繼在《自然 - 電子學》(doi.org/10.1038/s41928-019-0350-y)和《先進材料》(doi.org/10.1002/adma.201907937)等期刊公開發表。

(文章來源:與非網)

相關焦點

  • 研究團隊利用鐵電極化場對低維半導體材料精準摻雜並構建多種電子...
    近年來,新型低維材料出現,其獨特結構和奇異物性備受關注,已在電子和光電子器件等領域顯現出其潛在的價值。通過元素摻雜來調控半導體材料載流子類型及濃度是構建半導體功能器件的物理基礎。具體到新型低維半導體材料,如何實現對其載流子的精準調控,同樣是實現其豐富功能器件的必經之路。近日,中國科學院上海技術物理研究所研究人員與復旦大學、南京大學、南京大學、華東師範大學及中科院微電子研究所的相關團隊通力合作,提出了利用非易失性的鐵電極化場對低維半導體材料的精準摻雜的新方法,並運用該方法構建了多種新型功能的電子和光電子器件。
  • AM:非易失鐵電極化——構建低維半導體結型器件的新方法
    約八十年前被發現以來,p-n結已發展成為現代半導體器件的重要組成部分,傳統p-n結大部分是基於元素摻雜的體材料來實現。
  • 下一代電子信息材料與器件高峰論壇暨2020年第三屆低維材料應用與...
    下一代電子信息材料與器件高峰論壇暨2020年第三屆低維材料應用與標準研討會(LDMAS2020)(第一輪通知)(2020年12月5-8日 無錫)       集成電路是信息產業的基石
  • 低維半導體材料中的光生載流子高效抽取現象
    半導體材料中的光電轉換過程是光電探測器和太陽能器件的基礎,也一直是半導體材料和物理領域的研究熱點。傳統半導體物理理論認為:在低維材料中,光生載流子在形成後會弛豫到基態,由於受到量子限制,光生載流子難於逃離限制勢壘形成有效的光電流。因此,將低維半導體材料應用於光伏和探測器領域一直難以成功。
  • 物理所低維半導體材料中的光生載流子高效抽取現象研究取得進展
    半導體材料中的光電轉換過程是光電探測器和太陽能器件的基礎,也一直是半導體材料和物理領域的研究熱點。傳統半導體物理理論認為:在低維材料中,光生載流子在形成後會弛豫到基態,由於受到量子限制,光生載流子難於逃離限制勢壘形成有效的光電流。因此,將低維半導體材料應用於光伏和探測器領域一直難以成功。
  • 中科院研發低維半導體技術:納米晶片直接「畫出來」
    中科院今天宣布,國內學者研發出了一種簡單的製備低維半導體器件的方法——用「納米畫筆」勾勒未來光電子器件,它可以「畫出」各種需要的晶片。隨著技術的發展,人們對半導體技術的要求越來越高,但是半導體製造難度卻是越來越大,10nm以下的工藝極其燒錢,這就需要其他技術。
  • 半導體納米晶摻雜能級及摻雜發光有效調控的新途徑
    半導體之所以能被廣泛應用在光電產品世界中,憑藉的就是在其晶格中植入雜質改變其電性,調控半導體納米晶體的光、電、磁性質,實現高效率發光器件、太陽能電池、自旋電子器件等新型光電子器件的應用。納米晶體積小,生長速度快,因為 「自清潔」問題(self-purification),摻入的雜質原子很容易遷移到表面。
  • :基於2D半導體可逆固態摻雜的可編程器件
    2D材料具有原子薄的幾何形狀,對短溝道效應具有較高的抵抗力,並具有較高的柔韌性、機械強度、出色的透明度和寬譜可調性。但是,與3D半導體不同,由於難以摻雜原子薄的晶格而又不嚴重降低其結構和電子性能,控制2D半導體中的載流子類型具有挑戰性。在2D半導體中選擇性地實現p型和n型載流子摻雜可以實現所需的邏輯功能,有望簡化電路設計和製造。
  • 綜述:基於二維材料光電子學信息功能器件的新發展
    撰稿 | 王聰近年來,二維材料因其寬帶光響應、高載流子遷移率、高熱導率等特性,在凝聚態物理、材料科學、能源科學、電子學、光子學、光電子學等基礎物理研究領域,以及光伏器件、半導體、場效應電晶體、電極、電池、生物監測器、傳感器等實用研究領域都取得了突破性進展,受到了科學界的廣泛關注。
  • 新型超薄磁性半導體:打造新一代自旋電子器件和量子電子器件!
    (圖片來源:Sumio Ishihara)基於電子的自旋特性創造出的新型電子器件,也稱為「自旋電子器件」。自旋電子器件具有體積小、速度快、功耗低等優勢。在後摩爾時代,自旋電子器件有望成為基於電荷的傳統半導體器件的替代品。
  • :有機半導體n-型摻雜的光活化突破熱力學極限
    在過去的十年中已經開發出了多種穩定的分子p-型摻雜劑並且已經成功地部署在器件中,分子n-摻雜劑的研究也很活躍。然而,由於某些原因,適用於低電子親和力(EA)材料的空氣穩定的分子n-型摻雜劑仍然是研究的難點。n-型摻雜涉及到通過還原劑向半導體材料的電子傳輸軌道提供電子。
  • 推動甘肅光電子器件等產業升級,甘肅省有機半導體材料及應用技術...
    集微網消息(文/小如)近日,甘肅省發展和改革委員會正式批覆依託蘭州交通大學成立「甘肅省有機半導體材料及應用技術工程研究中心」。據悉,該工程研究中心的目標將新型半導體材料、尤其是新型發光材料和有機/聚合物光伏材料開發和產業化先導技術研究為核心,力圖成為甘肅省乃至西北地區先進有機半導體材料開發、器件製備與測試和應用技術先導研發基地,建成集科學研究-材料開發-器件製備-工程示範-服務諮詢-人才培訓-國際合作等功能於-體的科學研究和技術開發平臺,並建立西部地區領先的科研開發團隊,使中心的科研成果在稀土
  • 物理所低維半導體納米材料的結構與熱電特性研究取得進展
    低維半導體納米材料是未來納電子器件的基本組成單元,在電子、熱電、光電乃至能源等領域都有重要的應用。在過去的幾年中,中科院物理研究所/北京凝聚態物理國家實驗室(籌)高鴻鈞研究組在新型硼低維納米材料的製備、性質和應用方面開展系統研究,取得許多有意義的成果【Adv. Funct.
  • 北大承擔的國家重點研發計劃「氮化物半導體新結構材料和新功能...
    、湖南大學、廈門大學、中國科學院半導體研究所、北京科技大學、合肥彩虹藍光科技有限公司等14家單位共同承擔的國家重點研發計劃「戰略性先進電子材料」重點專項「氮化物半導體新結構材料和新功能器件研究」項目啟動會,在北京西郊賓館會議中心舉行。
  • 光電子器件在光纖通信中的應用及相關企業介紹
    重點支持人工智慧、網絡協同製造、3D列印和雷射製造、重點基礎材料、先進電子材料、結構與功能材料、製造技術與關鍵部件、雲計算和大數據、高性能計算、寬帶通信和新型網絡、地球觀測與導航、光電子器件及集成、生物育種、高端醫療器械、集成電路和微波器件、重大科學儀器設備等重大領域,推動關鍵核心技術突破。光電子器件是什麼?為何如此重要?
  • 紅外光電子學研究
    紅外光電子學與低維半導體物理學交叉形成了低維子帶物理學分支,並導致了基於子帶物理學的新一代紅外光電子器件,其中包括已實現實用化的量子阱紅外探測器和紅外級聯雷射器[1-3]。依然是基於子帶物理,通過量子點特殊的少電子系統特性實現遠紅外波段的單光子探測則成為納光電子學方面成果的範例。
  • 氧化鎵:有望帶來高功率密度、低功耗的新型電子器件!
    導讀近日,在《應用物理快報》雜誌上發表的論文中,新實驗展示了一種寬禁帶半導體材料氧化鎵(Ga2O3)被設計到一種納米結構中,從而使得電子在晶體結構中移動得更快,因此Ga2O3 有望成為一種用於高頻通信系統和節能電力電子器件的理想材料。
  • 「多維色譜技術」助力半導體等產業關鍵基礎材料電子氣的品質檢驗
    電子氣體是發展集成電路、光電子、微電子,特別是超大規模集成電路、液晶顯示器件、半導體發光器件和半導體材料製造過程中不可缺少的基礎性支撐源材料,它的純度和潔淨度直接影響到光電子、微電子元器件的質量、集成度、特定技術指標和成品率,並從根本上制約著電路和器件的精確性和準確性。
  • ...記劉益春和「低維氧化鋅材料的載流子調控與功能化研究...
    東北師範大學紫外光發射材料與技術教育部重點實驗室研究員徐海陽說,「低維氧化鋅材料的載流子調控與功能化研究」項目在信息、民用以及軍事領域等方面有著廣泛的應用,它可以給人們的生產生活帶來實實在在的影響。  徐海陽表示,他所工作的實驗室已在紫外發光材料與器件研究方面取得了多項重要進展,其中榮獲2015年國家自然科學獎二等獎的「低維氧化鋅材料的載流子調控與功能化研究」項目是最具成果的一項研究。  據項目帶頭人、東北師範大學校長劉益春介紹,氧化鋅是一種重要的第三代半導體材料。低維氧化鋅更因其優異的光電特性和新奇的物理性質成為材料科學前沿。
  • 半導體領域國家重點實驗室儀器配置清單
    半導體指常溫下導電性能介於導體與絕緣體之間的材料,常見的半導體材料有矽、鍺以及化合物半導體,如砷化鎵等;也可以通過摻雜硼、磷、錮和銻製成其它化合物半導體。其中矽是最常用的一種半導體材料。  半導體廣泛應用於集成電路、消費電子、通信系統、光伏發電、照明、大功率電源轉換等領域。