三角函數線詳解——高中數學必修四

2021-01-09 王老師教數學

學習三角函數線,首先我們來認識下有向線段。

1、有向線段:帶有方向的線段就叫做有向線段。如下圖所示:

2、三角函數線的定義

如圖:

設任意角a的頂點在原點O(單位圓的圓心),始邊與x軸的非負半軸重合,終邊與單位圓相交於點P(x,y),過點P作x軸的垂線,,垂足為點M;過點A(1,0)作單位圓的切線,設它與角a的終邊(當a位於第一、第四象限時)或其反向延長線(當a位於第二、第三象限是)相交於點T,於是有sina=y=MP,cosa=x=OM,tan a=y/x=PM/OM=AT/OA=AT.

我們規定與坐標軸同向時,方向為正方向,與坐標軸反向時,方向為負向,則有向線段MP,OM,AT,分別叫做角a的正弦線、餘弦線、正切線,他們統稱三角函數線。

(1)三角函數線的意義是可以表示三角函數的值,其長度等於三角函數值的絕對值,方向表示三角函數值的正負。

(2)因為三角函數線是與單位圓有關的有向線段,所以作角的三角函數線時,一定要先做單位圓。

(3)有向線段的書寫:有向線段的起點字母寫在前面,終點字母寫在後面。

相關焦點

  • 高中數學三角函數萬能公式
    高中數學三角函數萬能公式三角及其御用函數無疑是高中數學舉足輕重的戲份之一,對於一個至少盤踞著兩本必修而且還攜帶著為數眾多公式招搖過市的傢伙,這難道不足以引起重視嗎?下文有途網小編給大家整理了《高中數學三角函數萬能公式》,僅供參考!
  • 高中三角函數萬能公式 高中數學特殊公式
    高中三角函數萬能公式 高中數學特殊公式三角及其御用函數無疑是高中數學舉足輕重的戲份之一,對於一個至少盤踞著兩本必修而且還攜帶著為數眾多公式招搖過市的傢伙,這難道不足以引起重視嗎?下文有途網小編給大家整理了《高中三角函數萬能公式 高中數學特殊公式》,僅供參考!
  • 高中數學必修四:三角函數誘導公式二、三、四
    高中數學必修四:三角函數誘導公式二、三、四知識點一 誘導公式二——四1、 角的對稱(1) π+a的終邊與角a的終邊關於原點對稱;π-a的終邊與角a的終邊關於y軸對稱。(2) -a的終邊與角a的終邊關於x軸對稱;2、 誘導公式二、三、四的推導(1) 誘導公式二在單位圓上,角a的終邊與單位圓交於點P(x,y),角π+a與角a的終邊關於原點對稱,(2) 誘導公式三角a與-a的終邊關於x軸對稱,故在單位圓上,設P(x,y),則P』(x,-y)。
  • 高中必修四《任意角的三角函數》教學設計(第一課時)
    人教A版必修四》的第一章第二節,這是一堂關於任意角的三角函數的概念課。緊緊扣住三角函數定義,可以自然地導出本章的很多內容:三角函數線、同角三角函數基本關係、誘導公式、定義域、值域及圖像等。同時,三角函數作為描述周期變化現象的最常見、最基本的數學模型,不僅在高中數學中有廣泛的應用,而且在其他領域中也具有廣泛的應用。
  • 高中數學三角函數題型總結歸納,同角三角函數及誘導公式
    所以這是高中數學裡既要記憶又要理解的章節。考點3:半角平分法確定象限專題二:扇形的相關公式考點4:扇形的相關公式專題三:三角函數的定義考點5:終邊過定點問題考點6:三角函數線法解三角不等式考點7:三角函數值的符號判定專題四:三角函數的圖像及五大參數求法考點8:三角函數圖像考點9:三角函數五大參數求法專題五:誘導公式
  • 人教A版高中數學必修1第二章《基本初等函數(I)》思維導圖
    高中數學相比於初中數學來說,難度係數提高了不少,內容容量大了很多,所以,高中數學的學習和初中數學的學習還是存在很大差距的,有些人初中數學經常滿分,到高中時,卻發現數學怎麼就不一樣了。其實根本原因在於大家不夠重視,還以為高中數學像初中數學一樣,靠平時聽下課就能夠拿高分了。
  • 高中數學之三角函數題型總結(上)
    今天為大家總結和歸納一下數學三角函數有關的題型。高中數學三角函數,我們在做題的時候,遇到問題複雜一點的就不知道如何下手去做或者沒思路,弄不明白要怎麼解決。今天就圍繞三角函數展開來總結和歸納三角函數的基礎知識和題型。只有把基礎打好,才能在做題時得心用手,不會無從下手。三角函數在高考中考查比較多,屬於必須要得的分數。需要我們對三角函數的知識點牢牢掌握。下面我們一起來看一下。
  • 高一數學必修1,周期函數的四個特徵性質及其四個例題詳解
    高一數學必修1,周期函數的四個特徵性質及其四個例題詳解本課程適用於高一以及高一以上的學生,請根據自己的實際情況選擇性閱讀。1 函數注意事項之前的課程中,我們也對函數的概念進行了講解,和初中學習的函數的概念相同,高中的函數也是自變量和應變量是一對一的關係。
  • 高中數學必修一經典例題分析——指數函數
    高中數學必修一經典例題分析——指數函數對於即將升入高中的同學來說,高中數學是一個讓人比較頭疼的科目,下面是小編為大家整理的高中數學指數函數經典例題及解析,希望能對大家有所幫助。高中數學指數函數例題分析【例1】求下列函數的定義域與值域:解 (1)定義域為x∈R且x=?
  • 高考數學最難的部分 高中數學必修幾最難
    高考數學最難的部分 高中數學必修幾最難高中數學很多題型都是難度比較大的,必修幾的高中數學最難?下文有途網小編給大家整理了高中數學的最難部分,供參考!高中數學最難的部分是哪裡要說學的話,是函數較難,雖然考試裡它的佔分比例很大,但其實大部分還是強調基礎,所以這塊也並不需太過擔心。。。
  • 高中數學公式大全:反三角函數公式
    高中數學公式大全:反三角函數公式 2013-01-11 15:54 來源:新東方網整理 作者:
  • 高中數學必修一冪函數知識點總結
    高中數學必修一冪函數知識點總結 2018-12-31 17:56:24 來源:三好網
  • 高中數學教材上這些知識, 價值130分! 做到三點即可掌握
    高中數學教材上這些知識, 價值130分!2.高中數學必修課本的學習順序及內容 學校學習必修課本的主流順序是14523、12453。 高中數學必修課本共有5本。高一學完4本,高二前2個月再學1本。函數(必修1指數函數、對數函數)與導數(選修),一般在高考中,至少三個小題一個大壓軸題,分值在30分左右。以指數函數、對數函數、及擴展函數函數為載體結合圖象的變換(平移、伸縮、對稱變換)、四性問題(單調性、奇偶性、周期性、對稱性)以選擇題、填空題考查的主要內容,其中函數的單調性和奇偶性有向抽象函數發展的趨勢。
  • 高中數學知識點總結,三角函數題型得分的秒殺解題技巧
    高中數學,三角函數題型都是初等函數,難度是相對比較簡單的一類題目,只是考察三角函數公式變換的題型相對較多。而根據這幾年的慣例出題來看,三角函數的題目主要以考察三角函數的圖像和性質為主,題目涉及三角函數的圖像及應用、圖像的對稱性、單調性、周期性、最值、零點.考查三角函數性質時,常與三角恆等變換結合,加強數形結合思想、函數與方程思想的應用意識.題型既有選擇題和填空題,又有解答題,中檔難度.
  • 高一數學必修1基本初等函數解題技巧
    高一數學必修1基本初等函數解題技巧整個高中的數學都是圍繞函數進行考察的,而函數都是圍繞基本初等函數進行相關的變形進行相關的考察的,所以必須從基本初等函數下手,來解決函數中的相關問題,找到突破口,掌握考點
  • 高中數學必修一函數的概念及其表示方法專題訓練,你沒見過的題型
    以下是高中數學必修一函數的概念及其表示的專題訓練。高考對這一專題的內容要求了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念;在實際情境中,會根據不同的需要選擇恰當的方法(如圖象法、列表法、解析法)表示函數;了解簡單的分段函數,並能簡單應用。
  • 高中數學高頻考點——函數的奇偶性知識點總結
    人教版高一數學必修一新教材奇偶性是高中數學的一個高頻考點,考題形式多為選擇題或填空題。至於解答題題型,高一時考查的相對較多,高一以後考查的相對較少。選擇題的函數奇偶性考查方式,多是給一個複雜函數的解析式,然後根據函數解析式,綜合考慮函數具有的奇偶性、單調性、特殊點、值域等來判斷ABCD四個選項中哪個選項是它的大致圖象。有時選擇題和填空題也會給出一個奇(偶)函數在定義域的一個子區間上的解析式,然後求其對稱區間上的解析式。下面具體來介紹函數奇偶性的相關知識。函數奇偶性,指的是一個函數自身的對稱性。
  • 高中數學:三角函數知識點總結,附特殊角的三角函數值,建議收藏
    三角函數是數學中屬於初等函數,進入高中學習,同學們應該都知道,三角函數是與我們整個高中學習生活都分不開的。但單單三角函數的公式就會讓初學者混淆,不容易記住,如此多且複雜的公式,又該如何去掌握好它們呢?初中學到的只是三角函數的「皮毛」,高中在初中的基礎上增加了許多公式及運算規律,一下子,三角函數的知識構架就豐富了起來。僅僅從三角函這一知識點來看,在高中數學的學習更具有難度,若課前沒有對課程進行充分了解,只是盲目聽課的話,就會出現上課跟不上老師節奏的現象。
  • 高中數學高頻考點——函數的圖象變換知識點總結
    2020年高一數學必修一人教版新教材封面函數的圖象變換是中學數學的一個重要知識點,也是期中、期末和高考的高頻考點之一。高中階段函數圖象的簡單變換主要有平移變換、對稱變換、翻折變換、伸縮變換。在這裡需要注意的是,要把兩個函數圖象的對稱關係與一個函數的奇偶性區別開來,二者不是一回事。對稱變換是指的兩個函數圖象間的對稱關係,奇偶性是指的一個函數圖象自身的對稱關係。具體變換和例子如下圖所示:
  • 《高中數學》三角函數典型例題!抓緊看,不會的快收藏
    我是北大博士邱崇的助理湯圓,很高興又跟大家見面了,今天給大家分享一下高中數學——三角函數典型例題。高中數學,一度是每年高中同學噩夢般的存在,尤其是作為考試重點的三角函數方面,也使得無數同學「競折腰」,怎麼學好三角函數,也成為同學們最常問的問題。