土地利用轉移矩陣製作

2021-01-14 小青娃成長記
1 馬爾可夫模型(Markov)1.1馬爾可夫模型

馬爾科夫模型(Markov)是俄國數學家安德烈·馬爾科夫提出來的一種隨機過程的研究,隨機過程具有無後效性(即在系統狀態轉移過程中,系統將來的狀態只與現在的狀態有關,而與過去的狀態無關),該方法通過對各個時刻事件不同狀態的初始概率及狀態之間的轉移關係來預測事件下一步發生的狀態及其變化趨勢,是預測土地利用變化趨勢的好方法,在土地利用變化預測方面得到了廣泛應用。其模型公式為:


式中:和分別是第t+1期和第t期的土地利用狀態;i類土地利用類型轉化為j類土地利用類型的轉移概率,其數學表達式一般為:

式中:n為土地利用類型個數,並且滿足

1.2轉移矩陣

土地利用轉移矩陣能夠反映土地利用的結構特徵和各類型之間的轉化情況和方向,揭示各類型轉入轉出信息,轉移矩陣的數學形式為:

式中:為i類轉化成j類的面積;n為土地利用類型的數量;ij分別為轉移前後的土地利用類型。

2 數據來源與轉移矩陣構建2.1數據來源與處理

本文土地利用轉移矩陣構建以四川2000年、2010年土地利用數據為例,空間解析度1km,數據來源:資源環境數據云平臺。此次研究的土地利用數據的分類體系是中國科學院土地資源分類系統,土地利用分類到二級,本文知識分析一級分類土地利用轉移,首先對土地利用數據進行重分類(SpatialAnalyst Tools→Reclass→Reclassify),具體見圖1,其次利用裁剪工具(Data Management Tools→Raster→Raster Processing→Clip)得到四川省土地利用數據,具體操作圖2。

圖1 土地利用二級分類轉一級處理

圖2 四川省土地利用數據提取

2.2土地利用轉移矩陣

本次轉移矩陣利用利用ArcGIS進行製作,首先將四川省2000、2010年土地利用數據轉成矢量(CoversionTools→From Raster→Raster to Polygon),具體操作見圖3;然後對四川省2000和2010年矢量數據添加一個欄位,分別是DL2000和DL2010,並賦值為gridcode的值;最後利用相交工具(AnalysisTools→Overlay→Intersect),具體操作見圖4,導出屬性表,利用Excel表格製作轉移矩陣,具體操作見圖5,轉移矩陣見表1。

圖3 四川省土地利用數據矢量數據

圖4 四川省土地利用數據疊加分析(相交)

圖5 轉移矩陣製作

圖6  四川省2000-2010年土地利用景觀轉移矩陣(km²) 

2.3土地利用轉移概率矩陣與面積預測

圖6 土地利用轉移概率矩陣與面積預測截圖

    由於時間有限,關於馬爾可夫模型面積預測的具體操作未進行具體操作說明,將在後期推出具體的操作。百度雲將會分享四川省2000、2010年土地利用數據和土地利用轉移概率矩陣與面積預測的表格,可以直接根據表格模板自己運用。

四川省2000-2015年土地利用轉移矩陣百度雲分享連結:

https://pan.baidu.com/s/1FQZfSWV4mArzN7ns39AyZg    

 提取碼:ympx

後臺回覆:轉移矩陣,獲取百度雲連結

相關焦點

  • 【教程】利用ArcGIS製作土地利用轉移矩陣
    經常遇到土地利用轉移矩陣製作的問題,一段時間不接觸,時間長了就容易忘記
  • 【分析技術】土地利用轉移矩陣
    而在土地利用變化的研究中經常會用到土地利用轉移矩陣,用以有效表達倆個不同時相地類之間面積的轉換情況。那麼什麼是土地利用轉移矩陣,土地利用轉移矩陣又如何製作呢?讓我們一起看看吧!本文主要分為以下幾個部分:一.
  • 【土地利用變化分析1】如何在ArcGIS中計算土地利用轉移矩陣
    在一些土地利用變化的分析展示中,土地利用轉移矩陣是最直觀、常見的。
  • 【方法介紹】如何製作土地利用轉移矩陣
  • 視角| 全球地表覆蓋變化監測動態(土地利用)
    可快速關注我們全球地表覆蓋變化監測動態北克什米爾喜馬拉雅山土地覆蓋/土地利用的時空變化評估案例(1992至2018年)利用混合元胞自動機和馬爾可夫模型對非洲馬拉威德薩地區的土地利用/土地覆蓋動態進行建模
  • 三大常見信貸產品的風險轉移矩陣
    其實那個也是一種風險轉移矩陣,今天我們就將風險轉移矩陣闡述得更直白一些吧風險轉移矩陣是將資產從一種狀態滾動到另一種狀態所形成的過程,在這個風險轉移的過程中會細分為以下的一些內容。比如常用的有M0到M1,M1到M2這些情況的滾動,所以常規上我們也叫風險轉移矩陣為滾動率分析,這兩者是同一個意思。
  • 土地利用可持續性評價
    土地利用可持續性評價應針對不同的土地利用方式,從自然、社會、經濟、三方面對土地單位進行評價,並考慮這些因子在可預見的較長時間內的變化和穩定性。  2.土地利用可持續性的特點  土地利用可持續性不僅涉及到時間因素,還涉及到空間尺度。持續性是適宜性在時間上的擴展。土地適宜性是一種現狀的評價,土地利用的持續性是評價一塊土地在更長時期內是否適合於某種土地利用方式。
  • 人生的轉移矩陣 | 從票圈人贏到996循環,是成長還是衰退?
    先不忙,我們先來回答一個問題:這個轉移矩陣的概率數值,是對所有人都適用的?還是因人而異的? 回答是:都有。我們既可以定義對總體的轉移矩陣,也可以定義對總體中特定群體的轉移矩陣,也可以定義對總體中特定群體中的特定的一個人的轉移矩陣。
  • 【基金評價】關於基金業績持續性的研究(內附轉移矩陣概率圖)
    假設馬氏鏈是齊次的,定義是從起始時間0到終止時間t的轉移矩陣。利用2019年5-7月的基金評價數據,我們分別對半年期基金評價、一年期基金評價和三年期基金評價計算出月頻轉移矩陣。公募基金半年期評價的轉移矩陣,通過轉移矩陣我們可以計算出公募基金半年期評價在一個月內保持原星級的概率等指標,具體指標值見表2。
  • 一維有限深勢阱的轉移矩陣法求解
    (in Chinese)[6] 王憶鋒, 唐利斌.利用轉移矩陣和MATLAB求解一維薛丁格方程的一種簡捷方法[J]. 紅外技術, 2010, 32(3): 177-180.WANG Y F, TANG L B.
  • Ecological Indicators:土壤微生物對土地利用變化和土壤資源可...
    【歡迎您關注--農業環境科學】中國科學院西雙版納熱帶植物園生態水文研究組博士後Singh Ashutosh Kumar團隊測定了乾旱熱帶環境下土壤微生物指數隨土地利用變化(自然林、輪歇地、農田)、季節更替、土壤資源(C、N、P)可利用性的響應特徵。相關成果發表於Ecological Indicators(IF=4.49)。
  • 馬爾科夫轉移矩陣法模擬
    最近有朋友諮詢「馬爾科夫轉移矩陣法」中轉移概率矩陣問題,在解釋過程中順便編了個小程序,供大家參考。
  • 中國國土勘測規劃院2019年度全國土地利用變更調查監測與核查遙感...
    中招國際招標有限公司受中國國土勘測規劃院委託,根據《中華人民共和國政府採購法》等有關規定,現對2019年度全國土地利用變更調查監測與核查遙感監測任務進行公開招標,歡迎合格的供應商前來投標。
  • 武漢植物園在土地利用變化對土壤溫室氣體釋放影響的研究中取得進展
    武漢植物園在土地利用變化對土壤溫室氣體釋放影響的研究中取得進展 2018-01-03 武漢植物園 土地利用方式變化能夠通過改變土壤物理化學性質以及微生物群落結構,進而對土壤呼吸和甲烷氧化產生影響。研究土地利用變化對土壤溫室氣體釋放的影響對評估陸地生態系統碳動態有重要作用。  中國科學院武漢植物園土壤生態學課題組博士生張倩和助理研究員吳君君在研究員程曉莉的指導下,以丹江口庫區農田、灌叢和森林為對象,進行為期一年的土壤呼吸及其同位素的測量。
  • 土地利用變化下土壤團聚體中氮循環研究獲進展
    土地利用方式的改變,尤其是農田向人工造林地的轉變能大幅增加土壤中有機C的儲存,減緩溫室效應。然而,隨著人工造林下植被生物量的增加和有機C的固持,N素的限制作用越來越突出。未施肥土壤中90%以上的N以有機形態存在,因而土壤有機質中N的釋放通常決定著生態系統中N的有效性。然而,在造林系統中,土壤有機N的周轉狀況如何,土壤有機質中N素的供應能否滿足造林下C固持增加的需求,這些問題仍不十分清楚。
  • SCP基金會:知識矩陣
    知識矩陣 知識矩陣(SCP028)是在一個廢棄的市場發現的,知識矩陣沒有物理形態,其影響範圍為一邊長2.1米的正方形,此正方形區域通常被作為知識矩陣的「中心」。
  • 武漢植物園土地利用變化過程土壤碳氮耦合機制研究獲進展
    為了揭示土地利用變化(森林恢復)對土壤碳氮循環的影響,中科院武漢植物園系統生態學課題組助理研究員鄧琦在程曉莉研究員的指導下,以丹江口庫區森林,灌叢和農田生態系統等不同土地利用類型為對象,系統研究了土壤有機碳及其惰性有機碳的指數,總氮、氮的淨礦化及硝化和無機氮含量等碳氮循環過程。
  • 自控貓專欄 | 馬爾可夫1oo1矩陣
    需要注意的是最終結果狀態之間無法相互轉移。在1oo1矩陣中無論是被發現的安全失效和未被發現的安全失效均會造成過程誤停車,造成了相同的後果。處於該兩種狀態時重啟後系統能夠再次的完好使用。所以在建立狀態關係時可以把FSD和FSU合併為FS狀態。
  • 對角矩陣、單位矩陣、數量矩陣
    首先,看下對角矩陣的定義:如果一個矩陣的主對角線之外的元素都為0,則該矩陣為對角矩陣,但需要注意的是,對角矩陣的主對角線上的元素沒有限制。如圖:     主對角線之外的元素全為0,但主對角線上的元素沒有限制。那麼,得到 對角陣的一些性質:    1.  零矩陣是對角矩陣(這是廢話)。    2.