新納米電晶體展現強量子限制效應

2020-11-30 科學網
新納米電晶體展現強量子限制效應
有望在單分子生物感測、集成電路縮微等領域發揮重要作用

 

據美國物理學家組織網3月21日報導,美國德克薩斯大學的一個研究小組用非常細的納米線製造出一種電晶體,表現出明顯的量子限制效應,納米線的直徑越小,電流越強。該技術有望在生物感測、集成電路縮微製造方面發揮重要作用。相關研究發表在最近出版的《納米快報》上。

 

實驗中,他們用平版印刷技術製造了一種直徑僅有3納米到5納米的矽納米線。由於直徑非常小,表現出明顯的量子限制效應,納米線的塊值(bulk values)性質發生了變化。尤其是用極細納米線製造的電晶體,在空穴遷移率、驅動電流和電流強度等方面屬性明顯增強,大大提高了電晶體的工作效率,其性能甚至超過最近報導的用半導體摻雜技術改良的矽納米線電晶體。

 

德克薩斯大學研究人員沃爾特·胡介紹說,我們已經證明,載荷子遷移率會隨著矽隧道的量子限制程度增加而不斷提高,這在理論上為3納米直徑納米線的受激高速空穴流動提供了實驗證據。

 

這好像是違反直覺的,一根更細的納米線能產生比更粗的線更高的流動性。但研究人員解釋說,在塊狀矽中,形成電流的空穴能量分布很寬,量子限制效應限制了空穴,形成了更加一致的能量排列,從而提高了導線中的載荷子遷移率。在細納米線中,由於空穴能量分布更窄,反而提高了流動性和電流強度。當與構造類似的納米帶(只在厚度維度進行限制)相比時,細納米線也顯出隧道的量子限制程度提高,能產生更高的載荷子遷移率。

 

納米線電晶體技術主要用於製造廉價且超靈敏的生物傳感器,其靈敏度將隨納米線直徑的減小而增加。「我們計劃用這種型號的微細納米線電晶體來開發蛋白質生物感測器。」沃爾特·胡說,小直徑納米線依靠本身優勢,可在生物感測方面發揮重要作用,有望開發出最終達到一個單分子的靈敏感測儀器,而且信噪比更好。

 

除了生物感測器,新型高性能電晶體還在互補金屬氧化物半導體縮微技術(CMOS,一種集成電路材料微型化)上有極大潛力,目前該領域的發展已經接近極限,變得越來越難。沃爾特·胡認為,矽材料在納米電子設備領域仍具有很多潛能。矽納米線電晶體的性能隨著直徑減小而增強,將細微納米線電晶體排成陣列,無需新的工藝技術就能製造出高性能產品。新型納米線電晶體在把CMOS縮小到納米級別時甚至能簡化目前的工序,並不需要用高摻雜的補充質結作為源漏。(來源:科技日報 常麗君)

 

更多閱讀

 

 

 

 

 

特別聲明:本文轉載僅僅是出於傳播信息的需要,並不意味著代表本網站觀點或證實其內容的真實性;如其他媒體、網站或個人從本網站轉載使用,須保留本網站註明的「來源」,並自負版權等法律責任;作者如果不希望被轉載或者聯繫轉載稿費等事宜,請與我們接洽。

相關焦點

  • 7 / 5納米之後的量子效應 | 智慧產品圈
    展望未來,由於電晶體尺寸減小,預計會有更多的量子效應發生,這對維持靜電並減少柵極長度是需要的。」量子效應已被觀察、研究和提出多年了,它不僅僅是在半導體行業內。例如,量子隧穿在α粒子衰變研究中已經被記錄了近一個世紀。但是在晶片世界中,這些量子效應會出現在各種奇怪的行為中,這些行為導致了各種問題橫生。
  • 單分子電晶體中電子的量子幹涉效應被發現
    記者日前從廈門大學獲悉,該校固體表面物理化學國家重點實驗室洪文晶團隊和英國蘭卡斯特大學Colin Lambert教授、上海電力大學陳文博團隊合作,在國際上首次發現了在單分子電化學電晶體中電子的量子幹涉效應,在此基礎上製備出基於量子效應的高性能單分子電化學電晶體,為當前計算機晶片突破矽基半導體器件物理極限提供一個全新思路。
  • 物理學家發明量子隧道效應電晶體
    騰訊科學訊 據美國物理學家組織網近日報導,瑞士科學家表示,到2017年,利用量子隧道效應研製出的隧道場效應電晶體有望將計算機和手機的能耗減少到目前的百分之一。瑞士洛桑理工大學的科學家阿德裡安·約內斯庫在為英國《自然》雜誌撰寫的一篇文章中提出了上述看法,該文章是《自然》雜誌有關矽的特別報導的一部分。
  • 北大課題組:高性能二維半導體新材料展現出優異性能
    目前,隨著電晶體特徵尺寸的縮小,由於短溝道效應等物理規律和製造成本的限制,主流矽基材料與CMOS(互補金屬氧化物半導體)技術正發展到10納米工藝節點而很難提升,摩爾定律可能終結。本文引用地址:http://www.eepw.com.cn/article/201704/346372.htm  因此,開發新型高性能半導體溝道材料和新原理電晶體技術,是科學界和產業界近20年來的主流研究方向之一。
  • 我科學家發現單分子電晶體中電子的量子幹涉效應
    記者20日從廈門大學獲悉,該校固體表面物理化學國家重點實驗室洪文晶團隊和英國蘭卡斯特大學Colin Lambert教授、上海電力大學陳文博團隊合作,在國際上首次發現了在單分子電化學電晶體中電子的量子幹涉效應,在此基礎上製備出基於量子效應的高性能單分子電化學電晶體,為當前計算機晶片突破矽基半導體器件物理極限提供一個全新思路。
  • 晶片7納米製程,到底是電晶體間距還是電晶體大小7納米?
    同時也有人問,半導體的多少納米製程,到底是指電晶體間距多少納米,還是電晶體的大小是多少納米?>FinFET(鰭式場效應電晶體然而,在5nm以下的製程晶片中,影響晶片性能的除了漏電問題之外,更大的是量子效應的影響,這時晶片的特性更難控制,科學家們要尋求新工藝才能使晶片更進一步。
  • 向碳基晶片更進一步:臺積電、斯坦福等聯手開發碳納米管電晶體新...
    新的柵極電介質工藝在進入正題之前,不妨先來了解一下柵極電介質。這是位於柵極(gate)和電晶體溝道區域之間的一層絕緣層。當電晶體在邏輯電路中充當開關時,柵極上的電壓會在溝道區域產生電場,從而切斷電流的流動,控制下方溝道的導通和關斷。
  • 向碳基晶片更進一步:臺積電斯坦福聯手開發碳納米管電晶體新工藝
    而碳納米電晶體的直徑僅為1nm。新的柵極電介質工藝在進入正題之前,不妨先來了解一下柵極電介質。這是位於柵極(gate)和電晶體溝道區域之間的一層絕緣層。這時候,二氧化矽就不再適用了:絕緣層太薄,那麼由於量子力學的隧穿效應,實際上任何電荷都能穿透它,造成能量浪費。
  • 我科學家發現單分子電晶體中電子的量子幹涉效應 基於單個有機分子...
    記者20日從廈門大學獲悉,該校固體表面物理化學國家重點實驗室洪文晶團隊和英國蘭卡斯特大學Colin Lambert教授、上海電力大學陳文博團隊合作,在國際上首次發現了在單分子電化學電晶體中電子的量子幹涉效應,在此基礎上製備出基於量子效應的高性能單分子電化學電晶體,為當前計算機晶片突破矽基半導體器件物理極限提供一個全新思路
  • 化學所在高效單組份有機發光場效應電晶體方面取得進展
    有機發光場效應電晶體(OLET)作為一種同時兼具有機場效應電晶體(OFET但是,因為實現高性能OLET器件構築的材料體嚴重缺乏,所以造成OLET器件,特別是高性能單組份OLET器件的發展嚴重滯後,限制了相關應用領域的研究。  高性能OLET器件的構築需要同時具有高遷移率和強螢光的活性半導體材料,但是高遷移率和強螢光是一對矛盾體,很難實現二者在同一材料體系中的有效集成。
  • 向碳基晶片更進一步:臺積電斯坦福聯手開發碳納米管電晶體新工藝
    魚羊 編譯整理量子位 報導 | 公眾號 QbitAI5nm才剛嘗上鮮,臺積電的3nm廠房也已竣工,甚至傳出2nm工藝取得突破的消息。眼看著摩爾定律極限將至,下一步突破,恐怕就要看碳納米管的了。畢竟,晶片製造工藝達到5nm,就意味著單個電晶體柵極的長度僅為10個原子大小。而碳納米電晶體的直徑僅為1nm。
  • 納米級隧道效應器件
    在設法抑制短溝道效應的實驗中發現,當特徵尺寸逼近物理極限時,基於量子隧道效應的隧道效應器件比傳統MOSFET好。換言之,雙電子層隧道電晶體和共振隧道二極體等隧道效應器件比MOSFET更適合於納米電子學。
  • 量子隧道場效應電晶體可為計算機節能99%
    據美國物理學家組織網近日報導,瑞士科學家表示,到2017年,利用量子隧道效應研製出的隧道場效應電晶體有望將計算機和手機的能耗減少到目前的百分之一。
  • 想看到量子效應嗎?用納米粒子的量子光學冷卻吧!
    要看到量子效應,一個重要的要求是把粒子運動中的所有熱能去除,也就是說,把它冷卻到儘可能接近絕對零度的溫度。維也納大學(University of Vienna)、奧地利科學院(Austrian Academy of Sciences)和麻省理工學院(MIT)的研究人員現在通過展示一種冷卻懸浮納米粒子的新方法,離實現這一目標又近了一步,其研究結果發表在著名的《物理評論快報》上。
  • 單原子層溝道的鰭式場效應電晶體問世
    過去幾十年來,微電子技術產業沿摩爾定律取得了突飛猛進的發展,按照摩爾定律的預測,集成電路可容納電晶體數目大約每兩年增加一倍。目前集成電路中可實現的最小加工尺寸為3-5納米。當前,隨著集成電路特徵尺寸逼近工藝和物理極限,進一步縮小電晶體器件特徵尺寸極具挑戰。   圖1:單原子層溝道的鰭式場效應電晶體。
  • 晶片七納米製程,是指電晶體之間的間距是七納米,還是電晶體的尺寸
    晶片的納米製程時,先來了解納米的含義,它就是一個長度單位,相當於假如一張紙的厚度是0.1毫米,要將這張紙的厚度切成10萬條線,也就相當於1納米。這個長度並不是電晶體的間距,而是電晶體內部電流從起點流向終點要經過一道閘門,而這個閘門的寬度就是晶片中所說的納米單位。電晶體的閘門是整個電路的開關,控制著電晶體的電流。工作都要靠它來完成。當在斷開的狀態下就是0,連接的時候就是1,而矽中的電荷是分為兩種,在N極時就是負電子在活動,在P極時就是正電子在活動。
  • 突破性的量子點電晶體創造了無毒的柔性集成電路
    圖片提供:洛斯阿拉莫斯國家實驗室Victor Klimov說:"這種新方法對基於無毒量子點的電子設備的潛在應用包括可印刷電路,柔性顯示器,晶片實驗室診斷,可穿戴設備,醫療測試,智能植入物和生物識別技術。
  • 化學所在高性能有機場效應電晶體研究中獲系列進展
    場效應電晶體是電子學的基本元件。有機場效應電晶體由於其在柔性、大面積、低成本的電子紙、射頻商標和存儲器件等方面的潛在應用而受到人們的廣泛關注,是有機半導體材料和器件研究領域中的重要前沿方向之一。在中國科學院(先導B)、國家自然科學基金委和科技部的大力支持下,中國科學院化學研究所有機固體重點實驗室和相關單位合作,最近在高性能、柔性和噴墨列印高解析度有機場效應電晶體的研究方面取得新進展,有關結果均發表在Adv. Mater.上。
  • 碳納米管基鐵電場效應電晶體有優異存儲特性
    (a) 碳納米管基鐵電場效應電晶體結構示意圖 碳納米管獨特的結構和電學性質為其電子器件應用提供了巨大潛力。最近幾年來,中國科學院物理研究所/北京凝聚態物理國家實驗室表面物理實驗室/研究部SF1組將碳納米管的優點和鐵電薄膜的性質相結合,與微加工實驗室合作,研製成功了以外延鐵電薄膜為柵介質的單壁碳納米管場效應電晶體,開發出一種基於碳納米管的鐵電場效應電晶體存儲器件單元。
  • CMOS場效應電晶體的發展趨勢
    今天人們從模擬的結果預測10至15納米的溝道長度將是MOS管按比例縮小的物理極限[6]。更進一步,當管子的溝道長度小於這個尺寸,量子隧道效應將顯著增加以導致MOS管的柵極將完全損失掉對溝道的控制能力,這樣MOS管將不能完全截止導致它將不能完成最基本的開關功能。