高中數學,教你一招,完美解決三角函數和差公式計算題

2020-12-06 孫老師數學

在三角函數和差公式計算題中,為解題需要,常常要學會如何根據題意把一個角分成兩個角的和或差的形式,這種思維方式在考試中經常要用到,大家一定要認真體會。

第1題分析:這道題是分式形式,對分式化簡,需要把分子和分母因式分解,就是變成相乘的形式,然後「約分」。觀察題中的角度,sin65°可以變形成cos25°,25°可以拆分成15°+10°,再把cos80°換成sin10°,這樣分子分母中的角度就統一了,即只含有15°和10°,這樣就有可能起到化簡的作用,之所以在這兒使用「有可能」,是因為咱們可能不能一下子看到最終的結果走向,但是它的大致方向是對的,數學很多時候需要點兒推測,具體過程如下:

第2題分析:又是分式求值,和第1題一樣,可以考慮把10°拆分成30°-20°,30°是特殊角,它的正弦和餘弦值咱們都知道,這樣分式中就只剩下20°的角,通過變形應該可以化簡求值,詳細過程如下:

初中、高中、基礎、提高、中考、高考;關注孫老師數學,你想要的,這裡都有!禁止轉載!

相關焦點

  • 高中數學,三角函數和差公式計算題,有說簡單有說難,你覺得呢
    對於三角函數和差公式綜合計算題,相當一部分學生看到這樣的題型,不知道如何下手去做,所以會覺得比較難,基礎好並且想像力豐富的學生會覺得很簡單;對於公式類綜合題,往往靠的是豐富的想像力,就是看到已知中的條件,大腦能夠和課本上的某些公式建立一種聯繫,從而找到解題的突破口。
  • 高中數學,三角函數和差公式靈活應用,想考高分,這樣的題要多練
    有關三角函數和差公式的靈活應用題,往往都有一定的難度,要順利解出這些較難的題,首先要對公式的特點熟練到胸有成竹,其次要學會如何根據題意把已知條件以及已知條件的變形與要求的三角函數聯繫在一起,當然,要做好這一切,多做一些這種類型的題很有必要,下面咱們結合實例來探討如何解決這類問題。
  • 高中數學:公式定理+解題方法+例題,解決三角函數大難題!
    在高中數學中,三角函數相關知識既是重點也是難點,以高考全國一卷為例,從2015年到2019年,三角函數部分最少佔5分分值,最多佔12分分值,並且都是高頻必考考點,其重要性可見一斑。今天小編就來和大家分享三角函數相關知識,不論是正在學習的高一學生,還是已經在複習的高三學生,都會對你非常有幫助的。
  • 高中數學,巧湊三角函數和差公式,高考年年考,一定要熟練掌握
    很多時候需要咱們把一個複雜的三角函數代數式化簡成一個單個的三角函數的形式,其中使用正弦、餘弦的和差倒用公式是很重要的一個途徑,如上圖,這些公式的特點一定要熟記於心,才能在解決這類問題時遊刃有餘。在正式講例題之前,先要弄明白下面的變形過程,使用這個方法可以把所有形如msinα+ncosα的代數式變形成單個的三角函數形式,這個方法實際上就是使用正弦、餘弦和差倒用公式的過程。
  • 高中數學,做對這3道誘導公式綜合題,才能說真的理解了三角函數
    高中數學三角函數誘導公式綜合題解析班裡有個學生總說誘導公式他學的好,於是給他出了這3道題,看完題他不吭聲了,學習面前還是謙虛點兒好,是不是!單純考察三角函數部分誘導公式的題一般都不會太難,如果和其它知識點結合,特別是和函數結合,往往難度會大增,甚至很多學生會出現不知道如何下手去做,這節課咱們練習3道這類綜合題,一塊兒來領會三角函數獨特的特點。
  • 高中數學三角函數公式總結,想要拿高分,先把這些公式背下來!
    三角函數作為六大初等函數之一,是高中數學的難點。三角恆等變化多,考查題型更靈活。需要學生完全掌握三角和公式。說起來容易,做起來難。三角和公式太多,死記硬背根本行不通。只能通過推導進行理解記憶,找到公式之間的關聯,摸清規律。而且這一部分是高中數學常考考點,選擇題、填空題、計算題都出現過,甚至在一些立體幾何、不等式中也出現。總之,高中數學想要得高分,三角函數公式是必須要背誦的。
  • 高中數學:三角函數公式大全!一輪複習必備!尖子生人手一份
    三角函數在高中數學中難度不算很大,但是絕對是高考常考必考題型,算中檔題,高考在該部分一般有兩個試題。一個試題是,如果在解答題部分沒有涉及到正、餘弦定理的考查,會有一個與正餘弦定理有關的題目,如果在解答題中涉及到了正、餘弦定理,可能是一個和解答題相互補充的三角函數圖像、性質、恆等變換的題目;一個試題是以考查平面向量為主的試題。高考題目中,三角函數難度不大,拿分比較簡單,誘導公式是解決三角函數問題的前提,你都掌握了嗎?
  • 高中數學三角函數答題技巧匯總,加常用公式總結,給你洪荒之力
    三角函數是整個高中數學學習中的主線。想要取得好成績,就必須吃透這部分知識點。但三角函數知識具有一定的抽象性,其中蘊含很多數學思想,學起來比較複雜。所以很多同學對這部分的掌握並不是很好。那麼想要快速提高成績,有什麼好的辦法嗎?當然有,既然抽象思維不強,那麼我們可以換個思路。
  • 高中數學三角函數公式大全(重要知識點梳理)
    高中數學三角函數公式大全(重要知識點梳理)教學目標1、了解任意角三角函數的概念,弧度制與角度制互化。2、能推導三角函數誘導公式、 能畫出三角函數圖像、理解其性質,並進行平移變換。3、掌握兩角和的正弦、餘弦、公式,及其二倍角、半角公式,掌握並運用正弦定理、餘弦定理解決問題。
  • 三角函數中的誘導公式,和,差,倍角公式的應用精髓
    一入侯門深似海,從此親人變路人;這是以前對於宮廷的描述;不過今天我們要說的不是古代的事情,今天我們要說的是高中數學中必修四的三角函數章節,說三角函數章節的公式是整個高中階段最多應該不為過,同角三角函數之間的關係,輔助角公式,誘導公式,和角公式,差角公式,倍角公式;而且每個公式都會牽扯到正弦
  • 高中數學,三角函數誘導公式基礎題型,方法得當,解題特別順手
    解決有關三角函數誘導公式的題型,重要的原則是,如果題中不論是已知還是結論,角度過大時,要先根據誘導公式將其化小,因為角度越小越容易觀察出已知和結論中的角度之間的關係,有利於判斷選擇哪個誘導公式來解題;這類問題除了考察公式的熟練程度,一般會考察大家的觀察能力,就是觀察角之間的和或差和諸如
  • 高中數學三角函數公式輕鬆記:三角函數和差化積公式的快速記憶法
    三角函數和差化積公式輕鬆記憶三角函數的和差化積公式也是眾多高中生學習三角函數公式感到有些困難的內容,一則是公式記憶不容易,二是如何運用公式解決具體問題也是一大困難。這裡重點介紹如何快速有效地記憶和掌握三角函數和差化積公式,並且還要從最基本的兩角和差公式推導出和差化積公式,這樣就知道公式之所由來,有利於加深理解和記憶。最後還是從觀察發現的規律特點出發指導如何直接記憶公式,這樣便於直接運用公式解題。
  • 高中數學,三角函數和差公式提高題,成績總止步不前快來聽課
    有相當一部分學生,他們的數學成績總保持在中等或者中等以上,不管如何努力總是止步不前看,很難再提高,平時的課後作業,複習資料上的題也都能比較順利的做出來,這樣的學生一般來說基礎知識掌握的還不錯,問題往往出現在運用基礎知識的能力上,這節課咱們以兩道題為例,來感受一下如何靈活運用基礎。
  • 高一數學篇:兩角和與差的餘弦公式(必修1)
    必修1--第82課時:兩角和與差的餘弦公式
  • 高中數學答疑 01三角函數 誘導公式 和 二倍角公式 應用
    不斷有同學問問題,想到同學們的問題可能對其他同學有幫助,所以新建了#高中數學答疑#模塊,今天先上第1題,主要是三角函數誘導公式和二倍角公式應用,希望通過這題可以幫助同學們複習相關的公式和方法.先上題目有興趣的同學可以自己試試看,注意:——三角函數恆等變換問題的一個重要原則是「先角後名」,就是先研究「角」的特點,然後再解題,這題的關鍵是想辦法用前面給的角,把後面的角表示出來。
  • 高中三角函數公式大全:兩周搞定函數題型,高考數學提分30很輕鬆
    高中的數學裡的三角函數問題是很多孩子很苦惱的,因為公式太多記不住,考試沒法調動,只能眼看著丟分,作為家長也很著急,也沒法給孩子輔導。我是一名高中老師,我也遇到過很多學生有這樣的問題,後來我整理了一份三角函數公式給學生,讓他們背會,並且配合練習題,學生們用過後成績提升很明顯,說明公式是有效的。
  • 掌握變換公式,解決三角函數類題,巧妙運算
    高考是人生路上的一道門檻,很多高中生都認為高考中的數學是特別難的,其實只要掌握了裡面的一些技巧,高中數學就非常簡單了。一般高考的題目類型大致不會有太大的變動,其中三角函數需要運用的知識點比較多,同學們對於這些也不要頭疼,無非就是那些固定的公式,然後解答時根據公式延展開來就可以了。
  • 初中數學公式:三角函數和差角公式
    中考網整理了關於初中數學公式:三角函數和差角公式,希望對同學們有所幫助,僅供參考。   和差角公式   sin(A+B)=sinAcosB+cosAsinB ;sin(A-B)=sinAcosB - sinBcosA   cos(A+B)=cosAcosB - sinAsinB ;cos(A-B)=cosAcosB + sinAsinB   tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan
  • 「高三數學」效率刷題之一文輕鬆搞定三角函數秒殺技巧
    在歷年高考中,三角函數及解三角形的考題特點如下:1.三角內容命題的熱點是三角函數的圖像和性質、解三角形。(★每年必考★)。2.試題題型結構基本為一個大題一個小題或三個小題,主要考查以下三方面:(1)三角函數的圖像和性質,其著重點是三角函數的圖像、單調性、最值、周期性與奇偶性;(2)三角恆等變換,其著重點是誘導公式、同角三角函數的基本關係式、兩角和與差的正餘弦公式、二倍角公式;
  • 高中數學:三角函數核心公式匯總,學好「它」,這些基礎少不了!
    大家好,我是北大博士邱崇,清北助學團隊發起人,致力於高中教育,每天分享高中提分秘籍,答題技巧,幫助高中生快速提分。同學們在學業上有困難都可以來找我!關注我,帶你衝擊高分、逆襲尖子生。高中數學學習過程中三角函數是一大重要模塊,而高中階段也是主要涉及到這幾類三角函數,即:正弦函數、餘弦函數、正切函數、餘切函數、正割函數以及餘割函數,他們之間相互聯繫並不是彼此獨立的。