兩因素方差分析:被試內設計

2021-01-17 SPSS有話說


附錄:

兩因素被試內設計方差分析語法:包含主效應、交互作用和事後比較。   

DATASET ACTIVATE DataSet1.

GLM a1b1 a1b2 a1b3 a2b1 a2b2 a2b3  註:兩個因素的水平組合。

  /WSFACTOR=A 2 Polynomial B 3 Polynomial  註:A因素2個水平,B因素3個水平

  /METHOD=SSTYPE(3)

  /PLOT=PROFILE(A*B B*A)

  /EMMEANS=TABLES(A) COMPARE ADJ(LSD)  註:A因素的主效應、事後比較

  /EMMEANS=TABLES(B) COMPARE ADJ(LSD)  註:B因素的主效應、事後比較

  /EMMEANS=TABLES(A*B)  註:A因素與B因素的交互作用

  /PRINT=DESCRIPTIVE

  /CRITERIA=ALPHA(.05)

  /WSDESIGN=A B A*B.

註:該語句僅顯示主效應、交互作用和事後比較的結果,無法顯示簡單效應分析的結果。

 

兩因素被試內設計方差分析語法:包含主效應、交互作用、事後比較和簡單效應。   

DATASET ACTIVATE DataSet1.

GLM a1b1 a1b2 a1b3 a2b1 a2b2 a2b3

  /WSFACTOR=A 2 Polynomial B 3 Polynomial

  /METHOD=SSTYPE(3)

  /PLOT=PROFILE(A*B B*A)

  /EMMEANS=TABLES(A) COMPARE ADJ(LSD)

  /EMMEANS=TABLES(B) COMPARE ADJ(LSD)

  /EMMEANS=TABLES(A*B)  COMPARE(A) ADJ(SIDAK)  註:比較A因素不同水平下,B因素對因變量的影響。

  /EMMEANS=TABLES(A*B)  COMPARE(B) ADJ(SIDAK)  註:比較B因素不同水平下,A因素對因變量的影響。

  /PRINT=DESCRIPTIVE

  /CRITERIA=ALPHA(.05)

  /WSDESIGN=A B A*B.

註:簡單效應分析語句需要將【粘貼】後的交互作用語句部分進行修改,見紅色部分文字。該語句顯示主效應、交互作用、事後比較和簡單效應分析的結果。

相關焦點

  • 兩因素方差分析怎麼理解?
    文章來源: 丁點幫你作者:丁點helper看完單因素方差分析,一般的統計學中並不會直接講two-way(雙因素)方差分析,而是講「隨機區組設計的方差分析」,那這兩者有什麼關係嗎?從統計方法的角度來看,隨機區組設計的方差分析其實就屬於兩因素(或多因素)方差分析,一種說法認為,為什麼不直接叫兩因素,是因為不把「區組因素」算作一類真正的「因素」,而重點研究隨機分組因素。我們認為,實際稱雙因素方差分析可能更好理解。不過這裡稱作「隨機區組設計」,也是有其他特別的考慮。
  • 【學習記·第31期】單因素、雙因素方差分析VS協方差分析
    單因素方差分析單因素方差分析是對單因素實驗設計所得到的數據進行的分析。所謂單因素實驗設計是研究一個大於或等於兩個處理水平的自變量對因變量的影響的實驗設計。實驗所需的被試被隨機的選取並分配到自變量的各個處理水平,每個被試只接受一個水平的處理,因此這種實驗設計也被稱為被試間設計。
  • 單因素方差分析
    (一)單因素方差分析概念理解步驟  是用來研究一個控制變量的不同水平是否對觀測變量產生了顯著影響。這裡,由於僅研究單個因素對觀測變量的影響,因此稱為單因素方差分析。  例如,分析不同施肥量是否給農作物產量帶來顯著影響,考察地區差異是否影響婦女的生育率,研究學歷對工資收入的影響等。這些問題都可以通過單因素方差分析得到答案。  單因素方差分析的第一步是明確觀測變量和控制變量。例如,上述問題中的觀測變量分別是農作物產量、婦女生育率、工資收入;控制變量分別為施肥量、地區、學歷。  單因素方差分析的第二步是剖析觀測變量的方差。
  • SPSS——單因素方差分析
    單因素方差分析(one way anova),是一種較為常用的方差分析手段,主要目的是為了尋找多組數據總變異的真實來源,判斷總變異是來自於組內變異(Vin),還是來自於組間變異(Vbetween)。單因素方差分析的檢驗統計量F=Vbetween/Vin,表示組間變異與組內變異的比值。
  • SPSS超詳細操作:兩因素多元方差分析(Two-way Manova)
    ,各位夥伴請點擊相應的文章連結查看~~今天,我們再來介紹一種統計方法:兩因素多元方差分析(Two-way Manova)。部分數據如下:使用兩因素多元方差分析法進行分析時,需要考慮10個假設。 對研究設計的假設:1. 因變量有2個或以上,為連續變量;2.
  • SPSS超詳細教程:三因素方差分析
    在之前的醫咖會SPSS統計教程中,我們推送了「單因素方差分析」和「雙因素方差分析」的詳細教程,今天我們再來和小夥伴們分享「三因素方差分析
  • Excel無重複雙因素方差分析原理解析
    雙因素方差分析法是一種統計分析方法,這種分析方法可以用來分析兩個因素的不同水平對結果是否有顯著影響,以及兩因素之間是否存在交互效應。一般運用雙因素方差分析法,先對兩個因素的不同水平的組合進行設計試驗,要求每個組合下所得到的樣本的含量都是相同的。
  • 單因素方差分析(one-way ANOVA)
    來源:網絡單因素方差分析 (一)單因素方差分析概念
  • 【案例】SPSS統計分析:多因素方差分析
    多因素方差分析,用於研究一個因變量是否受到多個自變量(也稱為因素)的影響,它檢驗多個因素取值水平的不同組合之間,因變量的均值之間是否存在顯著的差異。多因素方差分析既可以分析單個因素的作用(主效應),也可以分析因素之間的交互作用(交互效應),還可以進行協方差分析,以及各個因素變量與協變量的交互作用。
  • SPSS統計分析:多因素方差分析及案例
    多因素方差分析既可以分析單個因素的作用(主效應),也可以分析因素之間的交互作用(交互效應),還可以進行協方差分析,以及各個因素變量與協變量的交互作用。根據觀測變量(即因變量)的數目,可以把多因素方差分析分為:單變量多因素方差分析(也叫一元多因素方差分析)與多變量多因素方差分析(即多元多因素方差分析)。本文將重點講述一元多因素方差分析,下篇文章將詳細講述多元多因素方差分析。
  • 如何用SPSS做單因素和多因素方差分析
    前段時間明明同學推送了一篇「如何用Excel做方差分析」,今天就講講如何用SPSS為大家展示常用的3種分析方法使用技巧即:單因素方差分析、雙因素方差分析(無交互效應和有交互效應)。讓大家對方差分析有一個更深的了解。首先,我們來了解一下什麼是方差分析。方差分析是對多個樣本平均數差異顯著性檢驗的一種方法,也就是推斷對多個樣本均數是否相等的方法。
  • 單因素完全隨機實驗設計方差分析
    基本特點單因素完全隨機實驗設計適用於這樣的研究:研究中有一個自變量,自變量有兩個或多於兩個水平(P≥2)。它的基本方法是:把被試(實驗單元)隨機分配給處理(自變量)的各個水平,每個被試只接受一個水平的處理。完全隨機實驗設計是用隨機化的方式控制誤差變異的。
  • 單因素方差分析超完整分析流程
    T檢驗與單因素方差分析的區別在於T檢驗只能對比兩組數據的差異。如果X和Y均為定類數據,想對比差異性,此時需要使用卡方分析。02. 格式要求在分析前首先需要按正確格式錄入、上傳才能得到有效的分析結果。針對方差分析,正確的錄入格式如下圖所示:03.
  • SPSS之單因素方差分析ANOVA
    方差分析是對多個(兩個以上)處理平均數進行假設檢驗的方法。單因素是指該實驗中只有一個實驗因素,而單因素方差分析則是用來判斷這一實驗因素對各處理的優劣情況。簡單而言,如果實驗只有一種影響因素,但又有多個不同的處理水平,最後得到的數據就可以用單因素方差分析來分析數據。在方差分析的體系中,單因素方差分析,即F測驗通過對數據差異的分析來推斷兩個或多個樣本均數所代表的總體均數是否有差別,可用於檢測某項變異因素的效應或方差是否存在。F越大,說明組間方差是主要方差來源,處理的影響越顯著;F越小,越說明隨機方差是主要的方差來源,處理的影響越不顯著。
  • SPSS單因素方差分析——菜鳥篇
    很多小夥伴對科技論文或畢業論文的數據分析方法存在諸多疑惑,最多的問題就是:我該用什麼分析方法?SPSS怎麼操作?結果怎麼詮釋?關注我們並做好筆記,相信你從菜鳥到精通SPSS不會很慢。本次內容我們將帶大家認識單因素方差分析,一起來學習吧!
  • 方差分析 (ANOVA)-29
    課程目標▶概念性認識「方差分析」和「ANOVA輸出表」▶能夠設計並實施一個「單因素」或「雙因素」實驗▶認識並解釋 交互作用因素A的不同水平是否存在差異?  為什麼?單個因素的 ANOVA▶單向方差分析(ANOVA)是比較兩組以上數據均值的差異的統計方法▶假設性檢驗為:
  • Excel四因素二水平正交實驗方差分析直觀分析極差分析
    正交實驗方差分析,研究多因素多水平的一種設計方法,它是根據正交性從全面試驗中挑選出部分有代表性的點進行試驗,這些有代表性的點具備了「均勻分散,齊整可比」的特點,正交試驗設計是分式析因設計的主要方法,是一種高效率、快速、經濟的實驗設計方法。
  • 教學視頻| 單因素方差分析(one-way ANOVA)及SPSS操作
    單因素方差分析(one-way ANOVA)也稱為F檢驗,是通過對數據變異的分析來推斷兩個或多個樣本均數所代表的總體均數是否有差別的一種統計推斷方法
  • Kruskal-Wallis檢驗:單因素方差分析的非參數方法
    3組以上數據均值有無差異,通常我們使用單因素方差分析來完成,前提是3組數據分別來自正態分布總體,且方差齊次,對於正態分布來說,可以不用過於嚴苛
  • SPSS實操教程——單因素方差分析
    這個時候需要使用方差分析。那怎麼做呢?做分析之前需要思考幾個問題?是不是單因素?是不是獨立?各組應變量是不是符合正態分布?各組應變量是不是方差齊性?好,他這個研究是單因素的,只是分析了藥物一個因素,包括三種不同的藥物,分為三組。而且各組之間也是相互獨立的。