Mol Cell:影響胚胎幹細胞分化的關鍵蛋白質

2021-01-10 生物谷

2014年6月11日 訊 /生物谷BIOON/ --蛋白質主要負責細胞的大部分功能,但其就像在一個擁擠晚會上的客人一樣,有時候其也會在複雜的細胞網絡中進行短暫地相互作用,因此其就不能確定哪些特殊反應是重要的。近日,來自芝加哥大學的研究人員開發了一種新型技術,其可以簡化蛋白質網絡,而且研究者也發現了一種單一蛋白質相互作用的重要性;通過設計出僅可以和前配偶體相互作用的合成性蛋白質,並且將其引入細胞中,研究者就可以揭示出調節胚胎幹細胞使其改變形狀成為其它細胞類型的關鍵反應。

該項研究刊登於國際雜誌Molecular Cell上;研究者Shohei Koide教授表示,我們的研究工作揭示了明顯的蛋白質網絡複雜性其實並不是如我們所想的那樣,而且涉及一系列蛋白質的迴路或許會控制每一個細胞反應。

當細胞對環境產生反應以及表現出一定的生物學功能時,蛋白質就會和處於複雜網絡中的另外一種蛋白質進行相互作用;這項研究中研究者開發出了一種名為定向網絡連接的新型技術,通過對小鼠胚胎幹細胞的研究,研究者從小鼠機體中移除了蛋白質Grb2,該蛋白質對於幹細胞轉化成為其他類型的細胞非常重要。

隨後研究人員重新合成了僅可以發生單一作用的蛋白質Grb2,並且將這些蛋白質引入到細胞中來觀察其特殊的反應是否使得幹細胞具有轉變形式的能力。如今研究者已經將該新型技術應用於其它領域的研究中了,比如癌症研究;通過揭示蛋白質之間的相互作用網絡研究人員希望為未來開發新型治療性手段提供新的思路。

最後研究者表示,如今我們可以設計出比天然蛋白質更為複雜的合成型蛋白質,並且應用這些蛋白質到新型的科學研究和醫學領域中去。(生物谷Bioon.com)

Directed Network Wiring Identifies a Key Protein Interaction in Embryonic Stem Cell Differentiation

Norihisa Yasuix,Greg M. Findlay et al

Cell signaling depends on dynamic protein-protein interaction (PPI) networks, often assembled through modular domains each interacting with multiple peptide motifs. This complexity raises a conceptual challenge, namely to define whether a particular cellular response requires assembly of the complete PPI network of interest or can be driven by a specific interaction. To address this issue, we designed variants of the Grb2 SH2 domain (「pY-clamps」) whose specificity is highly biased toward a single phosphotyrosine (pY) motif among many potential pYXNX Grb2-binding sites. Surprisingly, directing Grb2 predominantly to a single pY site of the Ptpn11/Shp2 phosphatase, but not other sites tested, was sufficient for differentiation of the essential primitive endoderm lineage from embryonic stem cells. Our data suggest that discrete connections within complex PPI networks can underpin regulation of particular biological events. We propose that this directed wiring approach will be of general utility in functionally annotating specific PPIs.

相關焦點

  • Cell Stem Cell | 蘇大張文勝組揭示小鼠胚胎幹細胞三胚層分化調控機制
    該研究結果揭示了小鼠胚胎幹細胞ESC分化期間特定BAF和PRC2亞基的不同機製作用。胚胎幹細胞(ESCs)能夠自我更新和分化成身體的所有細胞類型,這是由關鍵因子,包括轉錄因子(TF),多聚複合物,microRNA和組蛋白修飾物調控的。
  • Cell Stem Cell背靠背|揭開細胞表面張力與幹細胞分化的秘密
    撰文 | 十一月責編 | 兮細胞命運的轉變常常伴隨著細胞形狀和機械力的改變。然而,細胞機械力如何影響信號通路進而控制細胞命運。在大多數多細胞生物的發育過程中,全能幹細胞的形狀為球形,而全能細胞分化產生的細胞的形態在成體中呈現出顯著的不同。命運的獲得和細胞形狀的變化往往同時出現。而細胞形狀是由表面力學和與細胞外環境的相互作用決定的。但是一直以來細胞內在的機械力特徵與命運調節之間的機制還不得而知。其中有一個非常有趣的例子便是小鼠的胚胎幹細胞的早期分化過程(圖1)。
  • PNAS:確定維持果蠅成體幹細胞的關鍵蛋白質
    castor(Cas)基因編碼一個表達於濾泡幹細胞(follicle stem cells, FSCs)中的結構核蛋白.研究人員發現在胚胎發育過程中,Cas對產生特殊類型的大腦細胞起到了關鍵作用,並且幫助維持了整個生命過程中的FSCs.
  • 世界首例人胚胎幹細胞分化功能細胞治療半月板損傷
    2019年1月9日,世界首例人胚胎幹細胞分化功能細胞治療半月板損傷在華中科技大學同濟醫學院附屬同濟醫院因為半月板的血供不足等因素,半月板的自我修復能力較差,從而影響手術療效。幹細胞是一種具有自我更新和多向分化潛能的細胞群體,近年來受到學者們的廣泛關注。間充質幹細胞(mesenchymal stem cells,MSCs)是最具代表性的成體幹細胞之一,存在於多種組織器官當中,對組織損傷修復和疾病治療具有良好的作用,無致瘤性,是再生醫學最具潛力的種子細胞之一。
  • 微重力胚胎幹細胞定向分化一大步 太空移民一小步
    本次天舟一號上搭載的實驗之一,清華大學紀家葵團隊負責的「太空微重力環境下定向分化人類胚胎幹細胞為生殖細胞」實驗,意義正在於此。幹細胞、胚胎幹細胞、生殖細胞以及分化機制這一個實驗名稱中,就出現了幾種細胞。我們可以看一下,人類胚胎幹細胞、生殖細胞,都是什麼。
  • Proteomics:克隆胚胎幹細胞與正常受精胚胎幹細胞具有相似發育潛能
    該文章報導了使用miRNA晶片和蛋白質組技術分析了體細胞克隆胚胎幹細胞和正常受精胚胎幹細胞在miRNA水平和蛋白質表達水平,證明體細胞克隆胚胎幹細胞與正常受精胚胎幹細胞在轉錄後水平高度類似。體細胞核移植可以利用特異個體的分化細胞構建克隆胚胎從而可能得到病人特異的核移植胚胎幹細胞系,已有的報導已經在小鼠和非人靈長類中基於這種技術成功實施了治療性克隆。
  • 微重力環境下胚胎幹細胞定向分化的一大步 太空移民的一小步
    本次天舟一號上搭載的實驗之一,清華大學紀家葵團隊負責的「太空微重力環境下定向分化人類胚胎幹細胞為生殖細胞」實驗,意義正在於此。    幹細胞、胚胎幹細胞、生殖細胞以及分化機制    這一個實驗名稱中,就出現了幾種細胞。我們可以看一下,人類胚胎幹細胞、生殖細胞,都是什麼。
  • 上海生科院揭示決定人胚胎幹細胞神經分化的分子機制
    該研究根據人胚胎幹細胞(human embryonic stem cells,hESCs)基因組表達的動態變化,將hESCs神經分化過程劃分為五個重要階段(modules),並找到了決定hESCs神經分化過程的關鍵階段以及核心決定因子。  在人胚胎發育的過程中,神經外胚層的出現發生在受孕第三周的末期。
  • 細胞表面力學調控胚胎幹細胞的分化
    細胞表面力學調控胚胎幹細胞的分化 作者:小柯機器人 發布時間:2020/11/19 13:12:01 德國歐洲分子生物學實驗室Alba Diz-Muoz小組發現,細胞表面力學調控胚胎幹細胞的分化
  • Stem cell reports:科學家發現胚胎幹細胞向血管細胞分化的開關分子
    2015年7月1日訊 /生物谷BIOON/ --近日,來自美國的科學家發現了驅動胚胎幹細胞向內皮細胞成熟分化的一條分子機制,內皮細胞是可以形成血管的一類細胞,通過這一機制了解該分化過程對於幫助科學家們有效地將幹細胞誘導為內皮細胞用於組織修復具有重要意義
  • Nat Rev Mol Cell Bio:評論文章指出ES和iPS細胞可分化為脂肪細胞
    近日,國際著名評論雜誌Nature Reviews Molecular Cell Biology上刊登的一項評論文章指出,Cowan和同事如今報告了一種有效且一致的方案,能夠將ES和iPS細胞分化為白色與褐色脂肪細胞。人類胚胎幹(ES)細胞和誘導多能幹(iPS)細胞都具有在研究疾病的模型中產生病人特定體外細胞的能力。
  • Science:美學者揭示胚胎幹細胞有類似受精卵發育潛能
    2017年1月12日,國際頂尖學術期刊《Science》雜誌上在線發表了美國加州大學伯克利分校何琳教授研究團隊的一篇研究論文,研究報導移除一種名叫miR-34a的微RNA,成功讓老鼠胚胎幹細胞表現出類似受精卵的發育特性,能夠成功分化成胚胎組織和胚胎外組織。
  • Cell Stem Cell:一種關鍵的轉錄因子或能促進幹細胞分化形成心血管...
    2018年8月19日 訊 /生物谷BIOON/ --在很多研究中,研究人員都想發現一種單一的轉錄因子來誘導中胚層的形成,中胚層是胚胎發育的早期階段,如果沒有來自其它細胞蛋白的幫助,研究人員或許就無法誘導中胚層的形成。
  • Cell Stem Cell:發現一種新的中間胚胎幹細胞類型,有望開發新的...
    2020年12月8日訊/生物谷BIOON/---在一項新的研究中,來自美國德克薩斯大學西南醫學中心、加州大學戴維斯分校、中國五邑大學、江門大健康國際創新研究院、深圳華大基因研究院和中山大學附屬第一醫院等研究機構的研究人員從多種物種中獲得一種新的「中間(intermediate)」胚胎幹細胞類型,它可以在培養皿中產生嵌合體,並產生精子和卵子的前體細胞
  • Cell Stem Cell:幹細胞分化和早期胚胎發育中的關鍵調控信號通路
    近日來自上海交通大學醫學院、中科院上海生命科學研究院的研究人員在新研究中證實Calcineurin-NFAT信號通路在胚胎幹細胞及胚胎的早期譜系分化中發揮精密調控作用,相關論文於2011年1月7日在線發表在Cell出版社旗下的Cell Stem Cell雜誌上。
  • PNAS:利用人胚胎幹細胞可成功分化為骨細胞
    人類多能胚胎幹細胞>近日,紐約幹細胞研究中心(NYSCF)的研究者表示,人類的胚胎幹細胞可以分化成骨組織用以進行移植研究以及潛在的治療方法,這項研究刊登在了5月14日的國際雜誌PNAS上,文章中,研究者第一次使用源於胚胎幹細胞的骨細胞祖細胞來大量生成緊湊的骨組織用以修復釐米大小的缺陷。
  • 胚胎幹細胞轉染
    如何將一段螢光標記的寡核苷酸轉染入小鼠胚胎幹細胞中?實驗中該寡核苷酸有24個鹼基,沒有編碼蛋白質的功能,僅僅是起到誘導基因甲基化的作用。幹細胞纏繞方法有有三種,電穿孔法、脂質體轉染辦法、核轉染辦法,其中電穿孔法和脂質體轉染率僅為20%左右,核轉染法轉染率達到80%左右。
  • PNAS:轉錄因子Oct4與Erk/MAPK信號通路在胚胎幹細胞分化中的調控機制
    胚胎幹細胞(embryonic stem cells, ES細胞)來源於著床前囊胚的內細胞團,具有自我更新和分化多能性的特點,這使得其具有巨大的基礎研究和臨床應用價值。ES細胞的自我更新和分化受到細胞內轉錄因子與細胞外分子介導的信號通路的共同調控。
  • Cell:miRNA操控胚胎幹細胞「命運」
    多能胚胎幹細胞(pluripotent embryonic stem cell)來自胚泡(blastocyst)的內細胞群(inner cell mass),它們具有自我更新的能力,能發育成外胚層、中胚層和內胚層。而細胞命運決定(cell-fate decision)的精確控制對於未來多能胚胎幹細胞應用於醫學治療是非常重要的。
  • Stem Cells:樂衛東等研究胚胎幹細胞移植治療的成瘤性獲突破
    年11月30日,幹細胞權威雜誌Stem Cells在線發表了一篇論文表明,樂衛東等研究胚胎幹細胞移植治療的成瘤性獲突破。胚胎幹細胞具有體外培養無限增殖、自我更新和多向分化的特性。無論在體外還是體內環境,胚胎幹細胞都能被誘導分化為幾乎所有的細胞類型。因此,胚胎幹細胞是細胞移植治療中非常重要的細胞來源。但是,胚胎幹細胞治療存在一個非常大的問題,即成瘤風險,移植細胞中存在的未分化的胚胎幹細胞會在被移植體內成瘤。因此除去移植細胞中存在的未分化的胚胎幹細胞是國內外胚胎幹細胞治療研究中要解決的首要問題。