碳納米管在觸控面板領域的應用解析

2020-12-05 OFweek維科網

  清華大學教授談碳納米管的觸控螢幕應用

  碳納米管絲線,每根線中約有一百萬根碳納米管。這條線的強度,可以做到2 GPa,鋼大概是幾百MPa的強度。

  碳納米管材料的產業化進程

  清華-富士康納米科技研究中心於2002年5月奠基,2003年12月8日啟用,是由清華大學和富士康集團合作的一個科研機構。

  「碳納米管透明導電膜」是清華大學於2002年首先發現的創新材料。它就是從「超順排碳納米管陣列」中,直接幹法抽取得到的薄膜。2002~2008年,清華-富士康納米科技研究中心對碳納米管數組和薄膜的生產工藝進行了開發、放大,並自主研發了生產和檢測設備,形成了穩定的量產技術。圍繞該種材料的特性、製造以及各個領域的應用,清華大學已申請了逾4000項國內外專利,其中1400餘項已經得到授權。

  2011年,天津富納源創科技有限公司成立,開始建設大規模的碳納米管觸控螢幕生產基地。目前世界上還沒有其他國家能夠批量生產這種材料,天津富納源創是世界唯一得到授權能夠生產此種碳納米管薄膜的企業,該廠2012年導入生產,2012年下半年出貨量達5KK,2013年全年出貨量13KK,目前其生產規模已達300萬片/月,2014年,其位於貴陽的碳納米管生產基地也開始了建設,將來其生產能力將進一步增強。

  碳納米管觸控螢幕的發展時間表

  碳納米管拉膜。超順排的納米管,如果在下邊起一個頭,就把它拉躺下,本來是200微米高的納米管就一根一根接上,就像蠶繭抽絲似的,就抽成了一條線。如果起的頭夠寬,就抽成了一張膜。

相關焦點

  • 解析觸控面板新興材料對比_行業新聞_顯示面板材料資訊_顯示面板...
    本文來自:http://www.51touch.com/material/news/dynamic/2014/1104/32722.html       隨著觸控面板大尺寸化、低價化的需求,以及ITO薄膜不適用於可撓式顯示器應用、導電性及透光率等本質問題不易克服等,眾廠商紛紛開始研究ITO替代品,包括納米銀線、金屬網格、碳納米管以及石墨烯等材料,其中以納米銀線和金屬網格的發展較為成熟
  • 碳納米管國內外企業5大應用領域!
    日本富士通研究所開發了碳納米管半導體晶片電路技術。利用該項技術可起到降低電流電阻、防止電路斷路的作用,這將會極大的提高晶片的整體性能。 我國在碳納米管觸控屏領域已經取得產業化,此前,天津富納源創科技有限公司通過與清華大學的合作,成功產業化全球首個碳納米管觸控屏,並為華為等手機廠商配套。
  • 替代ITO薄膜 分析觸控面板新興材料發展概況
    隨著觸控面板大尺寸化、低價化的需求,以及ITO薄膜不適用於可撓式顯示器應用、導電性及透光率等本質問題不易克服等,眾廠商紛紛開始研究ITO替代品,包括納米銀線、金屬網格、碳納米管以及石墨烯等材料,其中以納米銀線和金屬網格的發展較為成熟。
  • 碳納米管技術獲突破 全新應用領域將開啟
    (原標題:碳納米管技術獲突破 全新應用領域將開啟)
  • 碳納米管全球高校應用研究7大領域!
    近年來,國際高校在碳納米管的諸多應用領域均取得了重大突破,包括電子領域(電晶體、傳感器等)、生物醫療領域、航空航天(研究用太空飛行器鏡片、複合材料增強體、功能材料)、軍事領域(生化防護服和地雷、爆炸物探測器)、能源領域(超級電容器、鋰離子電池和太陽能熱光伏設備)以及雷射器等,其中,碳納米管在電子器件、醫療領域以及傳感器方向有著較為廣泛的應用。
  • 碳納米管在太空飛行器上的應用進展
    最早是由日本電子公司(NEC)的飯島澄男(S.Iijima)博士採用電弧放電法製備C60時,在陰極處發現直徑4-30nm、長1μm的石墨管狀結構,即碳納米管,隨後在Nature上報導了這種新型碳材料。近年來,碳納米管以其優異的性能得到了廣泛的關注,並形成了碳納米管研究的熱潮。
  • 新工藝新材料引發觸控面板行業質變
    目前,群創、中華映管、富士康集團的觸摸面板廠商英特盛等企業已經開始供貨。  2013年是觸控行業轉變的關鍵一年。這一年,液晶面板廠,以IN-CELL或者ON-CELL製程大幅導入觸控面板產品,直接帶來,筆記本觸控面板2-3成的壓價。價格的變化,導致2013年觸控面板行業銷量和銷售額雙高的局面扭轉,行業利潤嚴重下壓。部分小型觸控面板企業紛紛轉停產。
  • 《印刷碳納米管薄膜電晶體技術與應用》出版
    、崔錚主編的《印刷碳納米管薄膜電晶體技術與應用》一書由高等教育出版社出版。  這是國內第一本印刷碳納米管薄膜電晶體領域的專著。該書圍繞「碳納米管」「印刷」和「薄膜電晶體」三個中心展開,共有九章,包括印刷電子、印刷薄膜電晶體和碳納米管電晶體發展歷程;碳納米管和印刷薄膜電晶體基礎知識;印刷半導體碳納米管墨水、導電墨水和介電墨水;印刷碳納米管薄膜電晶體構建技術;印刷碳納米管薄膜電晶體性能優化;印刷碳納米管薄膜電晶體應用(如邏輯電路、可穿戴電子以及類神經元電子器件方面的應用);其他類型碳納米管電晶體和應用以及印刷碳納米管薄膜電晶體的發展趨勢等
  • 清華大學教授談碳納米管的觸控螢幕應用
    自1991年被日本科學家飯島澄男發現以來,碳納米管就以其完美的一維結構吸引了世界上眾多科學家的關注。關於碳納米管的研究迅速成為科技領域的一個熱點,並逐漸形成了製備方法研究、物理化學性質研究和應用研究等三大研究方向。
  • 柔性AMOLED顯示模組與PEDOT觸控面板的技術整合
    藉助視頻交換系統、圖片交換系統以及放大/縮小的功能設置,6寸PEDOT觸控面板與AMOLED顯示模組的技術整合得到了成功展示。 1. 簡介 諸如ITO(氧化銦錫)等透明摻雜金屬氧化物一直是液晶顯示屏、觸控面板、OLED(有機發光二極體)以及太陽能電池等應用領域的主要選擇。然而,金屬氧化物薄膜的柔性極差,通常會在彎曲或扭轉過程中產生裂痕1。
  • 碳納米管海綿體的應用
    碳納米管海綿體是由相互交錯的碳納米管組成的三維結構,在複合材料以及環境保護方面具有潛在應用。具有釐米量級尺寸的碳納米管海綿體已經通過化學氣相沉積(CVD)方法成功製備並且研究了碳納米管海綿體的機械壓縮性能。
  • 【復材資訊】碳納米管在鋰離子電池中的應用
    自發現碳納米管以來,關於碳納米管在二次電池方面應用研究就沒有停止過。
  • 天津工大研製新型碳納米管導電薄膜
    傳統發光器件的導電薄膜多採用ITO薄膜,但其在沉積時要求真空度高,生產成本較高,柔性差,並且粘附性能不好,剛性易碎,限制了其在柔性顯示領域的廣泛應用。碳納米管(CNT)導電薄膜作為性能更好的替代品,在導電、透光,強度和柔性方面都呈現良好的特性,少量的CNT就可以形成一層隨機的網絡結構的CNT柔性透明導電薄膜,可以代替傳統的ITO薄膜應用在未來的柔性可穿戴設備當中。
  • 金百納碳納米管的優勢分析與應用
    打開APP 金百納碳納米管的優勢分析與應用 發表於 2017-12-27 11:42:52 深圳市金百納納米科技有限公司研發出來的碳納米管導電漿料,其型號為GCN168-40H,與同類碳納米管漿料產品相比具有金屬雜質含量低,導電性好等優點,報名角逐高工金球獎「年度創新技術/產品」的獎項。
  • 碳納米管在農業中的研究與應用
    碳納米管對植物生長發育的影響碳納米管可以進入植物組織細胞,從而影響植物的生長和發育,影響植物體內物質代謝。碳納米管可以影響植物的生長發育,而植物的生長發育在一定程度上是通過基因的表達來調控的。因此,碳納米管可能是影響了相關基因的表達,從而影響植物的生長發育。
  • 清華大學:碳納米管/石墨烯基納米材料在廢水處理中的應用
    碳納米管(CNT)/石墨烯基納米材料具有高的比表面積,中孔結構,可調節的表面性質和高化學穩定性,因此具有作為有機廢水處理吸收材料的巨大潛力。這些屬性使它們能夠在高濃度或高溫下承受苛刻的廢水條件,例如酸性,鹼性和鹹性條件。儘管已經報導了大量有關CNT /石墨烯基納米材料在有機廢水系統中的性能的工作,但其實際應用仍存在挑戰。
  • 清華化工系碳納米管團隊重大突破:發現碳納米管驚人的耐疲勞性能
    圖 | 碳納米管的結構與應用前景碳納米管的密度只有鋼鐵的六分之一,因此它的質量非常輕,但是碳納米管單位質量上的拉伸強度,卻是鋼鐵的四百多倍, 遠超過目前人類已知的任何其他材料。由於重量輕、韌性強,因此碳納米管在製備強度遠超碳纖維的下一代超強纖維方面具有巨大的優勢,在製備飛機骨架、飛彈、火箭以及太空飛行器等尖端領域具有廣闊的應用前景。
  • 清華化工系碳納米管團隊重大突破:發現碳納米管驚人的耐疲勞性能
    由於重量輕、韌性強,因此碳納米管在製備強度遠超碳纖維的下一代超強纖維方面具有巨大的優勢,在製備飛機骨架、飛彈、火箭以及太空飛行器等尖端領域具有廣闊的應用前景。但是,碳納米管非常細,直徑只有人類髮絲的千分之一,由於其超小尺寸特性以及難以被測試的特點,單根碳納米管的疲勞行為以及疲勞破壞機制研究是該領域長期未能搞清楚的重大難題。
  • 大尺寸觸控面板生產技術與應用趨勢
    ,過去大尺寸屏幕的觸控,僅能採成本低廉的是電阻式或成本高的聲波式、外掛光學式的設計;以往受限於貼合良率,僅能在中、小尺寸行動裝置所使用的投射式電容多點觸控技術,隨著G/G、in-cell等製程技術的純熟,以及觸控感測IC的進化,目前可在10~12寸平板、13~17寸輕薄/電競筆電、20~22寸AIO一體成型電腦等領域出現,更大尺寸(32~
  • 北大科研團隊破解碳納米管應用難題
    原標題:北大科研團隊破解碳納米管應用難題 北京大學化學與分子工程學院李彥教授課題組在單壁碳納米管手性可控生長研究上取得重要突破,該成果日前在《自然》雜誌上發表。