左邊的渦蟲可以表達蛋白TOR,而右邊的卻不行;應用基因操作的方法可以破壞表達TOR蛋白的基因(Credit: Image courtesy of University of California, Merced)
近日,來自加利福尼亞大學的研究者表示,眾所周知,扁蟲有再生細胞的能力可以為我們治療癌症以及再生醫學如何更好地對疾病打靶提供很多理論依據,刊登在雜誌Journal of Cell Science上的文章中,研究者指出了一種在人類和其它哺乳動物中所發現的一種由雷帕黴素靶蛋白質(TOR)所介導的信號通路,這種信號分子對於渦蟲特有的組織再生至關重要,使該蛋白失活可以阻止渦蟲再生,因此這就給我們了一個啟示,如果在人類細胞中破壞此蛋白,便可以阻止癌細胞的增殖。
研究者Oviedo表示,這將給我們提供了一個模型,我們可以利用操作這個信號分子通路來學習幹細胞的某些行為,另外研究者所發現的TOR蛋白(雷帕黴素靶蛋白)在癌症、衰老以及疾病惡化等疾病中扮演著重要的角色,但是具體作用機制並不清楚。Oviedo博士的實驗室準備用渦蟲(planaria)來研究解決相關問題,由於長時間科學界覺得渦蟲並沒有太高的科研價值,但是現在渦蟲這種扁形蟲卻在理解幹細胞的角色上至關重要,渦蟲有自我組織修復的能力,這種能力卻是空前的,而且這種修復可以幫助抵禦癌症和退行性疾病,基於以上理論只是,研究者們破壞了渦蟲中的TOR蛋白,並且將渦虫部分截肢,典型的情況下,渦蟲可以進行自我修復。
但是在研究中,研究者發現渦蟲自身所需的幹細胞在正確的位置能夠使組織再生長(regrow),但是不能使得重組重生(regenerate),也不能夠替代已經在正常位置所形成的組織,這種再生的方式以前並未報導,另外,被破壞了TOR蛋白的渦蟲並不能生長,儘管是在營養充足的情況下。為了阻止癌症蔓延,更好地理解TOR以及其扮演的角色可以有效地鼓勵組織再生醫學的發展以及更好的抵抗退行性疾病,比如阿爾茲海默病;研究生Harshani Peiris表示,渦蟲可以讓研究者更加清楚地看出自身整個機體內的反應,而不是單單在培養品中單個細胞的反應,我們目前對於渦蟲機體內的各種反應在系統水平上有更前沿的見解。
(生物谷:T.Shen編譯)
TOR Signaling Regulates Planarian Stem Cells and Controls Localized and Organismal Growth
T. Harshani Peiris, Frank Weckerle, Elyse Ozamoto, Daniel Ramirez, Devon Davidian, Marcos E. García-Ojeda and Néstor J. Oviedo*
The Target of Rapamycin (TOR) controls an evolutionarily conserved signaling pathway that modulates cellular growth and division by sensing levels of nutrients, energy and stress. As such, TOR signaling is a crucial component of tissues and organs that translates systemic signals into cellular behavior. The ubiquitous nature of TOR signaling, together with the difficulty to analyze tissue during cellular turnover and repair, have limited our understanding on how this kinase operates throughout the body. Here, we use the planarian model system to address TOR regulation at the organismal level. The planarian TOR homolog (Smed-TOR) is ubiquitously expressed, including stem cells (neoblasts) and differentiated tissues. Inhibition of TOR with RNA-interference severely restricts cell proliferation, allowing the study of neoblasts with restricted proliferative capacity during regeneration and systemic cell turnover. Strikingly, TOR signaling is required for neoblast response to amputation and localized growth (blastema). However, in the absence of TOR signaling, regeneration takes place only within differentiated tissues. In addition, TOR is essential to maintain the balance between cell division and cell death and its dysfunction leads to tissue degeneration and lack of organismal growth in the presence of nutrients. Finally, TOR function is likely mediated through TOR Complex 1 as its disruption recapitulates signs of TOR-phenotype. Our data reveal novel roles for TOR signaling in controlling adult stem cells at a systemic level and suggest a new paradigm to study TOR function during physiological turnover and regeneration.