2012年9月27日 訊 /生物谷BIOON/ --在一項新的研究中,美國德拉華大學電子與計算機工程助理教授Abhyudai Singh描述了一種新方法來理解基因表達中「噪音」的來源,其中這種噪音使得蛋白水平發生變化。相關研究結果於近期刊登在Molecular Systems Biology期刊上。
理解哪些生物化學過程導致這種變化是一個重要的問題,這是因為蛋白變化發揮著重要的作用,比如促進遺傳上完全相同的細胞產生不同的細胞,以及讓細胞群體對抗它們環境中發生的不可預測的有害變化。
這種方法利用單個細胞內的蛋白水平變化來精確地發現基因表達噪音的主要來源。
通過與來自美國加州大學舊金山分校格拉斯通病毒學與免疫學研究所的Leor Weinberger教授研究團隊合作,Singh將這種方法應用到人免疫缺陷病毒(HIV)系統,在這種系統中,基因表達噪音能夠促進HIV病毒進入潛伏期,即一種休眠的耐藥狀態。
這些結果揭示在HIV感染人細胞期間,mRNA複製的隨機性突增導致關鍵性病毒調節蛋白水平發生變化。Singh說,「我們認為理解這種病毒基因表達噪聲的來源將在設計阻止HIV病毒進入潛伏期的療法中產生重要的影響。」(生物谷:Bioon.com)
Dynamics of protein noise can distinguish between alternate sources of gene-expression variability
Abhyudai Singh1,2,a, Brandon S Razooky1,3,4,a, Roy D Dar4,5 & Leor S Weinberger
Within individual cells, two molecular processes have been implicated as sources of noise in gene expression: (i) Poisson fluctuations in mRNA abundance arising from random birth and death of individual mRNA transcripts or (ii) promoter fluctuations arising from stochastic promoter transitions between different transcriptional states. Steady-state measurements of variance in protein levels are insufficient to discriminate between these two mechanisms, and mRNA single-molecule fluorescence in situ hybridization (smFISH) is challenging when cellular mRNA concentrations are high. Here, we present a perturbation method that discriminates mRNA birth/death fluctuations from promoter fluctuations by measuring transient changes in protein variance and that can operate in the regime of high molecular numbers. Conceptually, the method exploits the fact that transcriptional blockage results in more rapid increases in protein variability when mRNA birth/death fluctuations dominate over promoter fluctuations. We experimentally demonstrate the utility of this perturbation approach in the HIV-1 model system. Our results support promoter fluctuations as the primary noise source in HIV-1 expression. This study illustrates a relatively simple method that complements mRNA smFISH hybridization and can be used with existing GFP-tagged libraries to include or exclude alternate sources of noise in gene expression.