作者:Jacob Aboudi, Steven M. Arnold, Brett A. Bednarcyk
出版社:Butterworh-Heinemann, 2013
前言
本書詳細闡述了統一化的多相複合材料的微觀力學理論體系,該理論體系綜合了科研工作者在過去30年裡所取得的成果。這些理論不僅適用於具有周期性微觀結構的複合材料,同樣適用於具有非周期性(有界的)微觀結構的複合材料。這些理論的獨特性和重要性在於不僅能描述複合材料的宏觀等效性能,還能描述組分材料內部的物理場的局部變化,因此有助於模擬複合材料局部的非線性現象如損傷和非彈性,這是預測複合材料失效和使用壽命的關鍵。此外,由於這些理論可以為多相複合材料建立宏觀、非線性、各向異性本構關係,因此適合合併到材料的多尺度分析中去。任何更高尺度的方法或模型都可以將這些理論作為有效的本構方程來調用以獲取複合材料結構中的局部非線性響應,並隨時重新獲取任一點的物理場。因此,這種微觀/宏觀結構的分析能力是獨特的,且得益於微觀力學理論自身的計算效率,實現起來十分便利。此外,非周期結構的微觀力學理論,將宏觀尺度和微觀尺度顯性地結合起來,可以同時分析單元不重複的問題。
本文闡述的統一化微觀力學方法,其另外一個特點是易於推廣到解決先進複合材料相關的技術問題。如複合材料(1)承受有限大變形,(2)受動力衝擊,(3)智能結構組成成分(電磁熱彈性體、電致伸縮器和形狀記憶合金),(4)展現完整(雙向)熱機耦合。大多數複合材料的相關書籍,重點關注宏觀力學方法,而對非線性問題,尤其是以上研究課題基本沒有提供解決方法,因此,作者認為本書填補了這些空白。
本書由三位作者歷時幾年完稿,主要工作是由第一作者在每年對位於俄亥俄州克利夫蘭市的美國宇航局格林研究中心的訪問期間完成。本書突出了過去二十年裡,在發展和應用這些理論時所取得的經驗教訓。所以,我們希望統一化的多尺度方法能夠幫助材料科學家、研究人員、工程師以及結構設計師更好地理解複合材料在各個尺度下的力學性能,以助於更充分地發揮複合材料的潛能。本書更多相關資料請參見網址:http://booksite.elsevire.com/9780123970350/. 密碼「Solutions」.
作者簡介
Jacob Aboudi 任職以色列特拉維夫大學機械工程學院的榮譽教授,曾任該校固體力學系,材料與結構系主任及工程學院院長。Jacob Aboudi 教授曾受邀訪問斯特拉斯克萊德大學、西北大學、維吉尼亞理工學院以及維吉尼亞大學。在40多年的學術生涯中,Jacob Aboudi 教授共發表了250多篇期刊論文,編著了兩本專著。
Steven M.Arnold 任職位於俄亥俄州的美國宇航局格林研究中心結構與材料分部力學與壽命預測系主任,美國宇航局多尺度分析中心的共同創始人兼主管,是Abe Silverstein 獎的獲得者,同時也是材料數據管理協會的共同創始人兼現任會長。他從事科研工作超過25年,發表了300餘篇科技論文,並擁有兩項美國專利。
Breet A.Bednarcyk 任職美國宇航局格林研究中心結構與材料部門力學與壽命預測系高級研究員以及分析與計算力學學科帶頭人,從事科研工作超過15年,發表了140篇科技論文,同時也是美國宇航局MAC/GMC軟體的主要開發者。
目錄
Preface
Acknowledgements
Acronyms
Chapter 1 Introduction
1.1 Fundamentals of Composite Materials and Structures
1.2 Modeling of Composites
1.3 Description of the Book Layout
1.4 Suggestions on How to Use the Book
Chapter 2 Constituent Material Modeling
2.1 Reversible Models
2.2 Irreversible Deformation Models
2.3 Damage/Life Models
2.4 Concluding Remarks
Chapter 3 Fundamentals of the Materianic of Multiphase Materials
3.1 Introduction of Scales and Homogenization/Localization
3.2 Macromechanics versus Micromechanics
3.3 Representative Volume Elements(RVEs)and Repeating Unit Cells(RUCs)
3.4 Volume Averaging
3.5 Homogeneous Boundary Conditions
3.6 Average Strain Theorem
3.7 Average Stress Theorem
3.8 Determination of Effective Properties
3.9 Mechanics of Composite Materials
3.10 Comparison of Various Micromechanics Methods for Continuous Reinforcement
3.11 Levin's Theorem: Extraction of Effective CTE from Mechanical Effective Properties
3.12 The Self-Consistent Scheme(SCS)and Mori-Tanaka(MT)Method for Inelastic Composites
3.13 Concluding Remarks
Chapter 4 The Method of Cells Micromechanics
4.1 The MOC for Continuously Fiber-Reinforced Materials(Doubly Periodic)
4.2 The Method of Cells for Discontinuously Fiber-Reinforced Composites(Triply Periodic)
4.3 Application: Unidirectional Continuously Reinforced Composites
4.4 Applications: Discontinuously Reinforced(Short-Fiber)Composites
4.5 Applications: Randomly Reinforced Materials
4.6 Concluding Remarks
Chapter 5 The Generalized Method of Cells Micromechanics
5.1 GMC for Discontinuous Reinforced Composites(Triple Periodicity)
5.2 Specialization of GMC to Continuously Reinforced Composite (Double Periodicity)
5.3 Applications
5.4 Concluding Remarks
Chapter 6 The High-Fidelity Generalized Method of Cells Micromechanics
6.1 Three-Dimensional (Triply Periodic) High-Fidelity Generalized
6.2 Specialization to Double Periodicity (for Continuous Fibers, Anisotropic Constituents, and Imperfect Bonding)
6.3 Reformulation of the Two-Dimensional (Doubly Periodic) HFGMC with Debonding and Inelasticity
6.4 Contrast Between HFGMC and Finite Element Analysis (FEA)
6.5 Isoparametric Subcell Generalization
6.6 Doubly Periodic HFGMC Application
6.7 Triply Periodic Application
6.8 Concluding Remarks
Chapter 7 Multiscale Modeling of Composite
7.1 Introduction
7.2 Multiscale Analysis Using Lamination Theory
7.3 HyperMAC
7.4 Multiscale Generalized Method of Cells (MSGMC)
7.5 FEAMAC
7.6 Concluding Remarks
Chapter 8 Fully Coupled Thermomicromechanical Analysis of Multiphase Composite
8.1 Introduction
8.2 Classical Thermomicromechanical Analysis
8.3 Fully Coupled Thermomicromechanical Analysis
8.4 Application
8.5 Concluding Remarks
Chapter 9 Finite Strain Micromechanical Modeling of Multiphase Composite
9.1 Introduction
9.2 Finite Strain Generalized Method of Cells (FSGMC)
9.3 Application Utilizing FSGMC
9.4 Finite Strain High-Fidelity Generalized Method of Cells (FSHFGMC) for Thermoelastic Composite
9.5 Application Utilizing FSHFGMC
9.6 Concluding Remarks
Chapter 10 Micromechanical Analysis of Smart Composite Materials
10.1 Introduction
10.2 Electro-Magneto-Thermo-Elastic Composite
10.3 Hysteresis Behavior of Ferroelectric Fiber Composite
10.4 The Response of Electrostrictive Composite
10.5 Analysis of Magnetostrictive Composite
10.6 Nonlinear Electro-Magneto-Thermo-Elastic Composite
10.7 Shape Memory Alloy Fiber Composites
10.8 Shape Memory Alloy Fiber Composites Undergoing Large Deformations
10.9 Applications
10.10 Concluding Remarks
Chapter 11 Higher-Order Theory for Functionally Graded Material
11.1 Background and Motivation
11.2 Generalized Three-Directional HOTFGM
11.3 Specialization of the Higher-Order Theory
11.4 Higher-Order Theory for Cylindrical Functionally Graded Materials (HOTCFGM)
11.5 HOTFGM Application
11.6 HOTCFGM Application
11.7 Concluding Remarks
Chapter 12 Wave Propagation in Multiphase and Porus Materials
12.1 Full Three-Dimensional Theory
12.2 Specialization to Two-Dimensional Theory for Thermoelastic Materials
12.3 The Inclusion of Inelastic Effects
12.4 Two-Dimensional Wave Propagation with Full Thermoelastic Coupling
12.5 Applications
12.6 Concluding Remarks
Chapter 13 Micromechanics Software
13.1 Accessing the Software
13.2 Method of Cells Source Code
13.3 MAC/GMC 4.0
13.4 Concluding Remarks
References
index
來源:武漢理工王繼輝教授課題組