高中數學:求函數解析式的方法,數學困難戶,拿起筆頭,奮起直追

2020-11-22 搜狐網

原標題:高中數學:求函數解析式的方法,數學困難戶,拿起筆頭,奮起直追

高中數學:求函數解析式的方法,數學困難戶,拿起筆頭,奮起直追

Hello,大家好!我是北大的劉天嬌! 每天與您相約!由於平時我特別喜歡與同學們討論學習上的問題,所以大家都喜歡叫我「愛學習的小仙女」。

今天,小仙女要來給大家講解一些求函數解析式的方法,成績偏弱的同學可要抓緊收藏哦!

一、 待定係數法:

在已知函數解析式的構造時,可用待定係數法。

例題1、 設 f(x)是一次函數,且 f [ f(x)] = 4x + 3 ,求 f(x)的解析式。

:設 f(x)= ax + b (a ≠ 0),則

∴ f(x)= 2x + 1 或 f(x)= -2x - 3

二、 配湊法:

已知複合函數 f [ g(x)] 的表達式,求 f(x)的解析式, f [ g(x)] 的表達式容易配成 g(x)的運算形式時,常用配湊法。

但要注意所求函數 f(x)的定義域不是原複合函數的定義域,而是 g(x)的值域。

例題2、

求 f(x)的解析式 。

解:

三、換元法:

已知複合函數 f [ g(x)] 的表達式時,還可以用換元法求 f(x)的解析式。

與配湊法一樣,要注意所換元的定義域的變化。

例題3、已知

求 f(x + 1)的解析式 。

解:

四、代入法:

求已知函數關於某點或者某條直線的對稱函數時,一般用代入法。

例題4、已知:函數 y = x^2 + x 與 y = g(x)的圖象關於點 (-2,3)對稱,求 g(x)的解析式 。

解:

當然!同學們也不能只學技巧,忽視了自己的成績!如果大家在學習上存在問題,不管是哪一科,也不管是學習方法 出了問題還是知識點掌握出錯,可以加我的個人微信:xuekui5382,我會帶你了解更多9大科目學習技巧和方法,掌握「高考漏洞」,以及高考出題人「慣用伎倆」,還有高考知識點,錯題技巧等等,助你快速提高成績!

五、構造方程組法:

若已知的函數關係較為抽象簡約,則可以對變量進行置換,設法構造方程組,通過解方程組求得函數解析式。

例題5、

解:

例題6、

解:

六、賦值法:

當題中所給變量較多,且含有「任意」等條件時,往往可以對具有「任意性」的變量進行賦值,使問題具體化、簡單化,從而求得解析式。

例題7、

解:

好了,今天的分享就到這裡了,歡迎同學們在下方評論區踴躍留言,參與討論,更多內容我們下次再見!返回搜狐,查看更多

責任編輯:

相關焦點

  • 高中數學——6種求函數解析式的基本方法及例題詳解
    高中數學——3種求函數值的常見方法,思路簡單,很實用!現在,我們來講函數解析式的求解方法。1.待定係數法例1.求一次函數y=f(x)解析式,使f(f(x))=4x+3.解:設f(x)=ax+b(a≠0).
  • 高中數學求函數值域問題的方法匯總。
    ★ 例1、求函數的值域。  解析:由解得  因為,所以,則  故函數的值域為。  二、換元法  換元法主要是把題目中出現多次的一個複雜的部分看作一個整體,通過簡單的換元把複雜函數變為簡單函數,我們使用換元法時,要特別注意換元後新元的範圍(即定義域)。換元法是幾種常用的數學方法之一,在求函數的值域中發揮很大作用。
  • 高中數學二次函數求值域,3張圖輕鬆掌握解題技巧
    語、數、外作為高中的三大主科,其重要性不言而喻。而數學是難度最大的一門學科,學好數學要進行知識點歸納總結,掌握解題技巧和方法,通過一定量的練習,由量變達到質變。將知識點完整梳理,公式、定理正確應用,把握好知識的重點,突破知識的難點,使數學的學習不留盲點,堅持始終,不斷的提升數學學習的綜合能力。高中數學分幾大板塊,包括函數與導數,三角函數,數列,立體幾何、解析幾何、統計概率等,在學習的過程中要做到重點知識重點複習,對常見考點和重點考點要做到心中有數,並將遺留的易錯題、難題,建立錯題本,不斷反思,避免錯誤的再出現。
  • 一文讀懂函數解析式的求法
    函數解析式的求法向來是高中數學的重點和難點部分,該部分內容在高考中經常遇到,能夠快速的求到函數解釋式對於高考想要拿高分的同學是必不可少的。本節就主要介紹各種函數解析式的求法,希望對大家有所幫助!函數解析式的求法函數解析式的求法主要分為以下幾類:構造法
  • 高中數學高頻考點——複合函數的單調性
    人教版高一數學必修一新教材封面基本函數的單調性有時難以成為一套試題的亮點,於是複合函數的單調性考查也就應運而生了。一、複合函數的形成過程及複合函數的外層函數和內層函數複合函數是指兩個或多個函數通過互相代入後得到的新函數。高中階段一般只考查由兩個函數構成的複合函數,其一般形成過程是,外層函數y=f(u),內層函數u=u(x),複合成為y=f(u(x))。具體簡單實例如下圖所示:
  • 高中數學高頻考點——函數的奇偶性知識點總結
    人教版高一數學必修一新教材奇偶性是高中數學的一個高頻考點,考題形式多為選擇題或填空題。至於解答題題型,高一時考查的相對較多,高一以後考查的相對較少。選擇題的函數奇偶性考查方式,多是給一個複雜函數的解析式,然後根據函數解析式,綜合考慮函數具有的奇偶性、單調性、特殊點、值域等來判斷ABCD四個選項中哪個選項是它的大致圖象。有時選擇題和填空題也會給出一個奇(偶)函數在定義域的一個子區間上的解析式,然後求其對稱區間上的解析式。下面具體來介紹函數奇偶性的相關知識。函數奇偶性,指的是一個函數自身的對稱性。
  • 高中數學複習,指數函數重要題型匯總1及解析
    高中數學複習,指數函數重要題型匯總1及解析。01、四個選項中,指數函數的圖像是相同的,由此可以得到底數b/a的範圍,而二次函數的對稱軸和b/a有關,所以考慮求出對稱軸的範圍,檢查四個選項,只有A選項滿足題意。
  • 高中數學:關於二次函數與冪函數的複習資料+習題講練PPT
    大家好,歡迎進入Math實驗室— 專注於數學的我是用心的!技巧總結歸納:1.冪函數的形式是y=x^α(α∈R),其中只有一個參數α,因此只需一個條件即可確定其解析式.2.若冪函數y=x^α(α∈R)是偶函數,則α必為偶數.當α是分數時,一般先將其化為根式,再判斷.3.若冪函數y=x^α在(0,+∞)上單調遞增,則α>0,若在(0,+∞)上單調遞減,則α<0.
  • 高中數學複習,指數函數重要題型匯總2及解析
    高中數學複習,指數函數重要題型匯總2及解析。07、函數表達式含有絕對值時,可以先去絕對值,再研究其性質,去絕對值的過程實際上就是分類討論,一般分兩類:分別令絕對值中的式子≥0和<0;去掉絕對值後,就可以根據指數函數的性質求或者判斷其單調性。
  • 高中數學求函數值域,剖析7類題型,總結16種方法與技巧
    不會真的有人覺得高中數學只要刷題就能提高成績吧?目前,高考提倡素質教育,考察的題型越來越靈活,基本上都是經典例題的變式,加強知識點之間的聯繫。做題越多會得越多的時代已經過去了,現在高中數學想要拿高分,必須掌握技巧。
  • 初二數學,怎麼利用一次函數圖像求解析式?掌握這種方法輕鬆求解
    利用函數圖象上的信息求解一次函數解析式是初二數學的重要題型,本文就例題詳細解析這類題型的解題思路,希望能給初二學生的數學學習帶來幫助。例題1在一次越野賽跑中,當小明跑了9km時,小強跑了5km,此後兩人勻速跑的路程s(km)與時間t(h)之間的關係如圖所示,請根據圖上的信息求s1的值。
  • 高中數學,複合函數在定積分中的應用,該兩點須積累,錯過會後悔
    /2圖一該題是複合函數和定積分的結合題型,該題需要知道兩點:第一,複合函數解析式的求法這兩點可以普遍的運用在該類題型之中,下面就講解題的過程中詳細的說明求解複合函數解析式的方法步驟和求解複雜定積分的方法。複合函數解析式的求解模板複合函數就是函數中有函數,即y=f(f(x))的形式。
  • 高中數學《函數的概念》說課稿
    高中數學《函數的概念》說課稿尊敬的各位考官大家好,我是今天的X號考生,今天我說課的題目是《函數的概念》。新課標指出:數學課程要面向全體學生,適應學生個性發展的需要,使得人人都能獲得良好的數學教育,不同的人在數學上都能得到不同的發展。
  • 高中數學10種常見函數的定義域和值域整理
    #高中數學天天練#函數是初中數學的重點,也是高中數學的重點。函數的三要素,即定義域、值域、對應關係中涉及了函數定義域和值域的求法。除此之外,判斷相等函數也是考試中的高頻考點,由於多為選擇題,我們也往往需要藉助「定義域和值域不同的兩個函數不是相等函數」這一知識點用排除法來做題。由此,一個函數定義域和值域也就成為了一個必備的知識技能。下面整理了高一數學常見函數的定義域和值域。
  • 高中數學:函數、數列、不等式、幾何求【最值問題】通解法分享!
    通解法就是把數列、不等式、解析幾何等最值問題通通轉化為函數問題,然後根據函數的屬性來求最值。 高中數學最值問題 【基礎方法介紹】 1、求函數最值常見的方法主要有這7種: 配方法,單調性法,均值不等式法,導數法,判別式法,三角函數有界性,數形結合圖象法
  • 高中數學:函數的專題知識-關於函數的單調性與最值問題講練PPT
    (2)複合法:同增異減,即內外函數的單調性相同時為增函數,不同時為減函數.(3)圖象法:如果f(x)是以圖象形式給出的,或者f(x)的圖象易作出,可由圖象的直觀性判斷函數單調性.(4)導數法:利用導函數的正負判斷函數單調性.2.證明函數的單調性有定義法、導數法.但在高考中,見到有解析式,儘量用導數法.
  • 高考數學最難的部分 高中數學必修幾最難
    高考數學最難的部分 高中數學必修幾最難高中數學很多題型都是難度比較大的,必修幾的高中數學最難?下文有途網小編給大家整理了高中數學的最難部分,供參考!高中數學最難的部分是哪裡要說學的話,是函數較難,雖然考試裡它的佔分比例很大,但其實大部分還是強調基礎,所以這塊也並不需太過擔心。。。
  • 必備技能,高中數學「函數圖像」相關問題的求解一般方法與技巧
    實際考試中,一般涉及函數圖像的問題有以下三種方式:① 在與函數性質相關問題的求解過程中使用圖像,體現數形結合思想;② 給出一個較複雜的圖像,求解析式,或已知較複雜的解析式,求圖像;③ 根據函數圖像,識別或判斷其特徵信息。2.
  • 高中數學三角函數萬能公式
    高中數學三角函數萬能公式三角及其御用函數無疑是高中數學舉足輕重的戲份之一,對於一個至少盤踞著兩本必修而且還攜帶著為數眾多公式招搖過市的傢伙,這難道不足以引起重視嗎?下文有途網小編給大家整理了《高中數學三角函數萬能公式》,僅供參考!
  • 高中數學入門篇之函數(上)
    高中數學入門篇之函數(上),尖子生數理化教育圖1剛上高中學數學的第一本書,就是必修1,這本書中的第一章便是函數,第一節的內容是集合,是為後續學習函數進行的鋪墊!我們進入高中,必須將初中的相關基礎知識牢記,同時還不能帶著初中的學習思維來進行高中數學知識點的學習。