磁場約束核聚變—託克馬克裝置

2020-08-27 科學眼觀

託卡馬克,是一種利用磁約束來實現受控核聚變的環性容器。它的名字Tokamak 來源於環形、真空室、磁、線圈。最初是由位於蘇聯莫斯科的庫爾恰託夫研究所的阿齊莫維齊等人在20世紀50年代發明的。託卡馬克的中央是一個環形的真空室,外面纏繞著線圈。在通電的時候託卡馬克的內部會產生巨大的螺旋型磁場,將其中的等離子體加熱到很高的溫度,以達到核聚變的目的。

相比其他方式的受控核聚變,託卡馬克擁有不少優勢。1968年8月在蘇聯新西伯利亞召開的第三屆等離子體物理和受控核聚變研究國際會議上,阿齊莫維齊宣布在蘇聯的T-3託卡馬克上實現了電子溫度 1 keV,質子溫度 0.5 keV,nτ=10的18次方m-3.s,這是受控核聚變研究的重大突破,在國際上掀起了一股託卡馬克的熱潮,各國相繼建造或改建了一批大型託卡馬克裝置。其中比較著名的有:美國普林斯頓大學由仿星器-C改建成的 ST Tokamak,美國橡樹嶺國家實驗室的奧爾馬克,法國馮克奈-奧-羅茲研究所的 TFR Tokamak,英國卡拉姆實驗室的克利奧(Cleo),西德馬克斯-普朗克研究所的 Pulsator Tokamak。

2006年9月28日,中國耗時8年、耗資2億元人民幣自主設計、自主建造而成的新一代熱核聚變裝置EAST首次成功完成放電實驗,獲得電流200千安、時間接近3秒的高溫等離子體放電。EAST成為世界上第一個建成並真正運行的全超導非圓截面核聚變實驗裝置。

早在1933年,即發現核裂變現象五年前,人類就發現了核聚變。雖然核裂變比核聚變發現得晚,但是很快就實現了核裂變爆炸。隨著受控核裂變發電獲得成功,世界範圍內大規模核電站建設迅速展開,並投入商業運行。

在核聚變實現後,同樣,人們也試圖能和平利用受控核聚變,如建立受控核聚變發電廠。與利用核裂變發電相比,利用受控核聚變的能量來發電具有許多優點:一是理論和實踐都證明,核聚變比核裂變釋放出的能量要大得多;二是資源蘊藏豐富,作為重核裂變主要原料的燃料鈾,目前探明的儲量僅夠使用約一百年,而 輕核聚變用的燃料氘在海水中儲藏豐富,1升海水可提取30毫克氘,通過聚變反應能釋放出相當於300公升汽油的能量。可謂取之不盡,用之不竭;三是成本低,1公斤濃縮鈾的成本約為1.2萬美元,而1公斤氘僅需300美元;四是安全可靠,萬一發生事故,反應堆會自動冷卻而停止反應,不會產生放射性汙染物, 不會發生爆炸事故。

但是,人類發現核裂變半個多世紀過去了,受控核聚變的研究進展緩慢,與受控核裂變的研究情況不同,受控核聚變至今還沒有實現可利用的能量輸出。

國際熱核聚變實驗堆計劃

「國際熱核聚變實驗堆(ITER)計劃」是目前全球規模最大、影響最深遠的國際科研合作項目之一,建造約需10年,耗資50億美元(1998年值)。ITER裝置是一個能產生大規模核聚變反應的超導託克馬克,俗稱「人造太陽」。2003年1月,國務院批准我國參加ITER計劃談判,2006年5月,經國務院批准,中國ITER談判聯合小組代表我國政府與歐盟、印度、日本、韓國、俄羅斯和美國共同草籤了ITER計劃協定。2013年1月5日中科院合肥物質研究院宣布,「人造太陽」實驗裝置輔助加熱工程的中性束注入系統在綜合測試平臺上成功實現100秒長脈衝氫中性束引出。

國際聚變界普遍認為,今後實現聚變能的應用將歷經三個戰略階段,即:建設ITER裝置,並在其上開展科學與工程研究(有50萬千瓦核聚變功率,但不能發電,也不在包層中生產氚);在ITER計劃的基礎上設計、建造與運行聚變能示範電站(近百萬千瓦核聚變功率用以發電,包層中產生的氚與輸入的氘供核聚變反應持續進行);最後,將在本世紀中葉(如果不出現意外)建造商用聚變堆。我國將力爭跟上這一進程,儘快建造商用聚變堆,使得核聚變能有可能在本世紀末在我國能源中佔有一定的地位。

相關焦點

  • 什麼是磁約束可控核聚變,什麼時候才能商業化可控核聚變發電?
    無論是磁約束還是慣性約束核聚變,都是可控核聚變研究的重要方向,兩者本質上沒有什麼區別,都是控制氚氘等輕元素聚合成重元素的一種方式,但兩者的原理與過程卻大相逕庭,不妨來圍觀一下!磁約束是將一束高溫等離子氣體引入一個不規則的環形磁場,讓這團氣體在磁場中加熱並約束足夠久的時間,讓其中的氚氘氣體在這個約束過程中實現聚變,聽上去似乎並不難,但極高溫等離子體非常難於被磁場約束,而且超高溫加熱時間不夠久(難以持續聚變),還有五千萬至上億度的高溫對於內壁材料絕對是一種折磨,另外氚氘聚變的中子輻射會導致內壁嬗變......簡單的說過陣子內壁就變成了另一種材料
  • 「仿星器」模仿恆星 幫助人類實現可控核聚變
    這裡提到的這臺仿星器代號「Wendelstein7-X(W7-X)」,其一次運行可以連續約束超高溫等離子體長達30分鐘。這臺設備坐落在德國格賴夫斯瓦爾德(Greifswald),研究人員表示這一超凡設計的裝置最終將幫助人類將可控核聚變變為現實。
  • 「仿星器」將投入運行:幫助人類實現可控核聚變
    (Greifswald),研究人員表示這一超凡設計的裝置最終將幫助人類將可控核聚變變為現實  北京時間10月30日消息,科學家們正接近將世界上最大的「仿星器」投入使用。所謂「仿星器」(Stellarator),顧名思義就是對恆星的模仿,本質上這是一種核聚變反應研究設備。這裡提到的這臺仿星器代號「Wendelstein 7-X(W7-X)」,其一次運行可以連續約束超高溫等離子體長達30分鐘。這臺設備坐落在德國格賴夫斯瓦爾德(Greifswald),研究人員表示這一超凡設計的裝置最終將幫助人類將可控核聚變變為現實。
  • 中國可控核聚變力壓美國,溫度達到太陽十倍,聚變發電還遠嗎?
    我國新一代人造太陽:中國環流器2號M的首次成功放電,標誌著國內聚變研究又向前邁進了一大步,溫度達到了1.5億攝氏度,是太陽中心溫度的10倍,而等離子體電流和環向磁場強度超過了美國現存最大的託克馬克裝置DIII-D,達到了世界一流水平。
  • 新能源:磁約束核聚變
    日前,中國科技大學宣布,我國首臺大型反場箍縮磁約束聚變實驗裝置(KTX)各系統的部件研製建造工作全面完成,進入裝置的最後整體安裝調試階段。從核裂變到核聚變,科學家們始終在尋找最清潔的能源。早在1942年12月2日,美國物理學家E·費米在芝加哥大學校園內一個球場上建成了世界第一個核反應堆。由此,人類開創了釋放核能的新時代。
  • 德國造出未來核電廠模型 「仿星器」離人類可控核聚變夢想又進了一步
    就像太陽能量的產生依靠原子核的聚變反應一樣,「仿星器」(Stellarator)的本質上是一種核聚變反應研究設備。仿星器通過模仿恆星內部持續不斷的核聚變反應,將等離子態的氫同位素氘和氚約束起來,並加熱至1億攝氏度的高溫,發生聚變以獲得持續不斷的能量,最終幫助人類實現對核聚變釋放能量的有效利用。
  • 雷射約束和磁約束是可控核聚變的兩種方式
    圖片來自網絡核聚變分為兩種:一種是雷射約束核聚變,也成為慣性約束核聚變。慣性約束核聚變是把幾毫克的氘和氚的混合氣體或固體,裝入直徑約幾毫米的小球內。從外面均勻射入雷射束或粒子束,球面因吸收能量而向外蒸發,受它的反作用,球面內層向內擠壓(反作用力是一種慣性力,靠它使氣體約束,所以稱為慣性約束),就像噴氣飛機氣體往後噴而推動飛機前飛一樣,小球內氣體受擠壓而壓力升高,並伴隨著溫度的急劇升高。當溫度達到所需要的點火溫度(大概需要幾十億度)時,小球內氣體便發生爆炸,並產生大量熱能,這種爆炸就是慣性約束核聚變。
  • 世界最大核聚變研究設備仿星器開始運行
    新華網柏林12月11日電(記者郭洋)德國馬克斯·普朗克研究所下屬的等離子體物理研究所10日說,用於研究核聚變反應的世界最大仿星器「螺旋石7-X」當天開始運行,並首次製造出氦等離子體。顧名思義,仿星器就是對恆星的模仿,實際上是一種核聚變反應研究設備。
  • 中國可控核聚變實驗裝置獲重大突破
    這分別是國際上最長時間的高溫偏濾器等離子體放電、最長時間的高約束等離子體放電,標誌著我國在穩態高約束等離子體研究方面走在國際前列。      高參數、高約束模式偏濾器等離子體是未來聚變託克馬克放電的最基本的運行方式。
  • 德國仿星器刷新2000萬度高溫紀錄,核聚變能源即將迎來突破?
    目前很多國家都在單獨或聯合研究核聚變反應堆,最熱的是託克馬克裝置,包括歐洲國際熱核聚變實驗反應堆,美國國家點火裝置,以及中國合肥的先進實驗超導託卡馬克實驗裝置等,中國的託克馬克本月12日首次實現了加熱功率超過1億兆瓦,等離子體儲能達到300千焦,等離子體中心電子溫度首次達到1億度,朝著未來聚變堆實驗運行邁出了關鍵一步。
  • 世界最大核聚變研究設備仿星器運行
    可控核聚變一直被認為是解決能源問題的主要選擇。1公斤核聚變原料產生的電能等同於1.1萬噸煤產生的電能,而核聚變反應所需的氚和氘在自然界中廣泛存在,核聚變反應堆比目前核電站的核裂變反應堆產生的核廢料更少,放射性也會在短期內消失。因此,可控核聚變也一直是人類研究的重點。近日,科學家在這一研究上又邁出重要一步。
  • 【核科普】核聚變裝置「託卡馬克」簡史
    蘇聯庫爾恰託夫原子能研究所的阿奇莫維奇於1954年建成了第一個磁約束裝置。但人們很快發現,理論上估計的等離子體約束時間與實驗結果相差甚遠。人們開始認識到核聚變問題的複雜和研究的艱難。在這種情況下,蘇、美等國感到保密不利於研究的進展,只有開展國際學術交流,才能推進核聚變的深入研究。另外,磁約束核聚變與熱核武器在科學技術上沒有重大的重疊,而且其商業應用的競爭為時尚早。
  • 託卡馬克」是世界最大、最複雜的磁約束核聚變裝置
    如今,在法國南部海港城市馬賽以北約80公裡處的聖保羅-萊迪朗斯小鎮,國際熱核聚變實驗反應堆計劃(ITER)組織的數千名來自不同國家的科學家、工程師和管理人員正在埋頭「築夢」。數十年後,一個「人造太陽」可能在當地流水潺潺的迪朗斯河邊升起。
  • 世界最大核聚變研究設備仿星器開始運行
    核聚變是解決能源問題的主要選擇之一。核聚變反應所需的氚和氘在自然界中廣泛存在,1公斤核聚變原料產生的電能等同於1.1萬噸煤產生的電能。核聚變反應堆比目前核電站的核裂變反應堆產生的核廢料更少,放射性也會在短期內消失。
  • 託卡馬克:可控核聚變裝置
    託卡馬克又稱環磁機,是一種利用磁約束來實現磁約束聚變的環性容器。達到穩定的等離子體均衡需要圍繞環面移動的螺旋形狀的磁力線。這個等離子體電流與外面的線圈電流一起,產生一定的螺旋型磁場,將其中的等離子體約束住,並使其與外界儘可能地絕熱。這樣,等離子體才能被感應、中性束、離子迴旋共振、電子迴旋共振、低雜波等方式加熱到上億度的高溫,以達到核聚變的目的。
  • 核聚變仿星器「W7-X」磁場強度達到設計峰值
    誤差不到十萬分之一 或可用作更安全實用核聚變模型試驗呈現的表面磁場線(《自然·通訊》雜誌供圖)科技日報北京12月5日電 (記者聶翠蓉)美國能源部(DOE)普林斯頓等離子體物理實驗室(PPPL)官網4日發布公告稱,該實驗室物理學家薩姆·拉澤爾松與德國科學家合作證實,核聚變裝置代號「W7-X」的仿星器能產生與設計值完全一致的高強磁場。
  • 可控核聚變是什麼?將引發第四次工業革命
    與核裂變反應不同,核裂變的原子核質量較大,而且本身不穩定,所以只要常溫常壓的環境就能實現裂變反應。 在這兩大難題上,中國取得的成果都是領先世界,首先是利用慣性約束理論中國建成了神光I和神光II系列雷射裝置,來自上海交通大學的張杰帶領團隊參與的神光II裝置,利用強雷射模擬太陽耀斑中環頂x射線源和重聯噴流,經過7年的嘗試,實現了快點火雷射聚變物理方案。
  • 中國科大建成我國首臺反場箍縮磁約束聚變裝置
    每兩分鐘即可獲得一次放電,最大等離子體電流可達180千安……11月3日,中國科學技術大學發布消息,我國首臺反場箍縮磁約束聚變裝置——「科大一環」正式建成運行。
  • 全超導託卡馬克核聚變實驗裝置
    受控熱核聚變能的研究主要有兩種--慣性約束核聚變和磁約束核聚變。前者利用超高強度的雷射在極短的時間內輻照氘氚靶來實現聚變,後者則利用強磁場可很好地約束帶電粒子的特性,將氘氚氣體約束在一個特殊的磁容器中並加熱至數億攝氏度高溫,實現聚變反應。 託卡馬克(Tokamak)是前蘇聯科學家於20世紀50年代發明的環形磁約束受控核聚變實驗裝置。
  • 核聚變將最終成為未來的能源嗎?
    按目前世界能量的消耗率估計, 地球上蘊藏的核聚變能可用100億年以上。因此從原理上講, 聚變能可以成為人類取之不盡、用之不竭的能源。實際情況真的如此嗎?人類離可控核聚變還有多遠?《科學通報》發表中國原子能研究院研究員陳永靜撰寫的「核聚變將最終成為未來的能源嗎?」一文,介紹了核聚變基礎知識和可控核聚變的發展及現狀。