託卡馬克,是一種利用磁約束來實現受控核聚變的環性容器。它的名字Tokamak 來源於環形、真空室、磁、線圈。最初是由位於蘇聯莫斯科的庫爾恰託夫研究所的阿齊莫維齊等人在20世紀50年代發明的。託卡馬克的中央是一個環形的真空室,外面纏繞著線圈。在通電的時候託卡馬克的內部會產生巨大的螺旋型磁場,將其中的等離子體加熱到很高的溫度,以達到核聚變的目的。
相比其他方式的受控核聚變,託卡馬克擁有不少優勢。1968年8月在蘇聯新西伯利亞召開的第三屆等離子體物理和受控核聚變研究國際會議上,阿齊莫維齊宣布在蘇聯的T-3託卡馬克上實現了電子溫度 1 keV,質子溫度 0.5 keV,nτ=10的18次方m-3.s,這是受控核聚變研究的重大突破,在國際上掀起了一股託卡馬克的熱潮,各國相繼建造或改建了一批大型託卡馬克裝置。其中比較著名的有:美國普林斯頓大學由仿星器-C改建成的 ST Tokamak,美國橡樹嶺國家實驗室的奧爾馬克,法國馮克奈-奧-羅茲研究所的 TFR Tokamak,英國卡拉姆實驗室的克利奧(Cleo),西德馬克斯-普朗克研究所的 Pulsator Tokamak。
2006年9月28日,中國耗時8年、耗資2億元人民幣自主設計、自主建造而成的新一代熱核聚變裝置EAST首次成功完成放電實驗,獲得電流200千安、時間接近3秒的高溫等離子體放電。EAST成為世界上第一個建成並真正運行的全超導非圓截面核聚變實驗裝置。
早在1933年,即發現核裂變現象五年前,人類就發現了核聚變。雖然核裂變比核聚變發現得晚,但是很快就實現了核裂變爆炸。隨著受控核裂變發電獲得成功,世界範圍內大規模核電站建設迅速展開,並投入商業運行。
在核聚變實現後,同樣,人們也試圖能和平利用受控核聚變,如建立受控核聚變發電廠。與利用核裂變發電相比,利用受控核聚變的能量來發電具有許多優點:一是理論和實踐都證明,核聚變比核裂變釋放出的能量要大得多;二是資源蘊藏豐富,作為重核裂變主要原料的燃料鈾,目前探明的儲量僅夠使用約一百年,而 輕核聚變用的燃料氘在海水中儲藏豐富,1升海水可提取30毫克氘,通過聚變反應能釋放出相當於300公升汽油的能量。可謂取之不盡,用之不竭;三是成本低,1公斤濃縮鈾的成本約為1.2萬美元,而1公斤氘僅需300美元;四是安全可靠,萬一發生事故,反應堆會自動冷卻而停止反應,不會產生放射性汙染物, 不會發生爆炸事故。
但是,人類發現核裂變半個多世紀過去了,受控核聚變的研究進展緩慢,與受控核裂變的研究情況不同,受控核聚變至今還沒有實現可利用的能量輸出。
國際熱核聚變實驗堆計劃
「國際熱核聚變實驗堆(ITER)計劃」是目前全球規模最大、影響最深遠的國際科研合作項目之一,建造約需10年,耗資50億美元(1998年值)。ITER裝置是一個能產生大規模核聚變反應的超導託克馬克,俗稱「人造太陽」。2003年1月,國務院批准我國參加ITER計劃談判,2006年5月,經國務院批准,中國ITER談判聯合小組代表我國政府與歐盟、印度、日本、韓國、俄羅斯和美國共同草籤了ITER計劃協定。2013年1月5日中科院合肥物質研究院宣布,「人造太陽」實驗裝置輔助加熱工程的中性束注入系統在綜合測試平臺上成功實現100秒長脈衝氫中性束引出。
國際聚變界普遍認為,今後實現聚變能的應用將歷經三個戰略階段,即:建設ITER裝置,並在其上開展科學與工程研究(有50萬千瓦核聚變功率,但不能發電,也不在包層中生產氚);在ITER計劃的基礎上設計、建造與運行聚變能示範電站(近百萬千瓦核聚變功率用以發電,包層中產生的氚與輸入的氘供核聚變反應持續進行);最後,將在本世紀中葉(如果不出現意外)建造商用聚變堆。我國將力爭跟上這一進程,儘快建造商用聚變堆,使得核聚變能有可能在本世紀末在我國能源中佔有一定的地位。