科學家將金屬化石墨烯納米帶製成全碳電子產品的導線

2020-09-29 cnBeta

幾十年來,矽一直是應用於電子器件的首選材料,但它的效率開始達到了極限。下一步可能是碳電晶體和電路,現在加州大學伯克利分校的工程師們已經創造出了金屬石墨烯納米帶,可以作為這種全碳電子產品的導線。

摩爾定律是一個描述技術進步速度的理論,聲稱集成電路上可以容納的電晶體數目在大約每兩年便會增加一倍。雖然幾十年來一直如此,但近年來,隨著我們達到矽的物理極限,其發展速度開始放緩。

碳資源豐富,價格便宜,而且有多種形式,是保持摩爾定律的重要競爭者,特別是如果能實現全碳電路的話。石墨、金剛石和碳納米管都是碳的形式,已被證明在各種電子元件中有用。但也許最有希望的是石墨烯。而且即使是這種東西也可以有不同的形狀--作為片材、微小的量子點或長長的薄 "納米帶"。

加州大學伯克利分校的團隊現在取得突破的就是最後一種形狀。石墨烯納米帶通常是半導體,但該團隊已經成功地將它們變成了金屬,這使得它們具有導電性,能夠像電線一樣在電路中攜帶電子。

「我們認為,金屬線真的是一個突破,」該研究的作者Felix Fischer說。「這是我們第一次可以在不需要外部摻雜的情況下,有意識地用碳基材料創造出一種超窄的金屬導體--一種良好的、內在的導體。」

為了創造這些金屬納米帶,研究小組利用加熱將納米帶的短段拼接在一起,以創建一條數十納米長,僅1.6納米寬的導電金屬線。完成後,研究人員發現,納米帶具有金屬的電子特性,每一段只貢獻一個導電電子,然後可以沿著帶子自由流動。而最後,該團隊對結構進行了一個微小的改變,以進一步提升其性能。

「利用化學原理,我們創造了一個微小的變化,每100個原子中僅有一個化學鍵的變化,但卻將納米帶的金屬性提高了20倍,從實用的角度來看,這對使其成為一種優秀的金屬是很重要的。」該研究的作者Michael Crommie說。

雖然碳納米管是優秀的導體,並在電子領域展現了前景,但該團隊表示,它們更難大規模製造。納米碳帶更容易批量製造,使全碳電子產品更加可行。

「納米碳帶讓我們能夠使用自下而上的製造方式,以化學方式獲得廣泛的結構,這在納米管中還不可能實現,」Crommie說。「這使得我們基本上可以將電子縫合在一起,以創建金屬納米帶,這是以前沒有做過的事情。這是石墨烯納米帶技術領域的重大挑戰之一,也是我們對它如此興奮的原因。」

該研究發表在《科學》雜誌上。

相關焦點

  • 《Science》重大突破:石墨烯納米帶實現金屬性調控
    為了要賦予單層石墨烯某種電性,會按照特定樣式切割石墨烯,形成石墨烯納米帶(Graphene nanoribbon)。切開的邊緣形狀可以分為鋸齒形和扶手椅形。採用緊束縛近似模型做出的計算,預測鋸齒形具有金屬鍵性質,又預測扶手椅形具有金屬鍵性質或半導體性質;到底是哪種性質,要依寬度而定。可是,近來根據密度泛函理論計算得到的結果,顯示出扶手椅形具有半導體性質,其能隙與納米帶帶寬成反比。
  • 《Science》重大突破:石墨烯納米帶實現金屬性調控!
    為了要賦予單層石墨烯某種電性,會按照特定樣式切割石墨烯,形成石墨烯納米帶(Graphene nanoribbon)。切開的邊緣形狀可以分為鋸齒形和扶手椅形。採用緊束縛近似模型做出的計算,預測鋸齒形具有金屬鍵性質,又預測扶手椅形具有金屬鍵性質或半導體性質;到底是哪種性質,要依寬度而定。可是,近來根據密度泛函理論計算得到的結果,顯示出扶手椅形具有半導體性質,其能隙與納米帶帶寬成反比。
  • 在半導體上生長石墨烯納米帶的技術帶來更高效的電子產品
    威斯康星大學麥迪遜分校的研究人員發現了一種直接在常規鍺半導體晶片上生長具有理想半導體特性的石墨烯納米帶的方法。這一發現可能使製造商能夠在混合集成電路中輕鬆使用石墨烯納米帶,這將大大提高下一代電子設備的性能。這項技術還可能在工業和軍事應用方面有特殊用途,例如探測特定化學和生物物種的傳感器以及操縱光的光子設備。
  • 《物理化學期刊C》:俄羅斯科學家發現石墨烯納米帶製造新方法
    《物理化學期刊C》:俄羅斯科學家發現石墨烯納米帶製造新方法  CHEN • 2021-01-12 11:52:19 來源:前瞻網 E1146G0
  • 突破矽半導體微細化極限!日本全球首次精確合成出石墨烯納米帶
    」 以平面狀鍵合物質,開發出了通過精確控制結構將其合成為帶狀的方法,並成功製作了較寬的 「石墨烯納米帶(GNR)」,GNR作為半導體具有非常優異的電氣特性。此次製作的GNR寬約2納米,相當於17個原子,與電流易流動性相關的 「帶隙」 僅0.6eV左右,作為既可以成為絕緣體也可以成為導體的半導體材料,表現出了最佳性質。石墨烯是碳原子以單層原子的厚度呈六角形晶格狀連接的二維材料。從理論上預測,石墨烯在正常情況下具有導體的性質,但製成細長生長的數納米寬帶狀GNR後會形成帶隙,成為半導體材料。
  • 碳納米管與金屬納米導線成功連接
    美國羅斯塞拉(Rensselaer)工學院研究人員表示,他們找到了一種能將碳納米管和金屬導線相連接的新工藝,並用它研製出結合了碳納米管和金屬納米導線最佳特性的納米導線。
  • 全碳電子產品可靈活集成到各種物體表面
    韓國蔚山國立科學技術研究所和韓國電工研究所的研究人員採取一種新方法合成出完整的全碳電子設備,包括電晶體、電極、連接線及傳感器,大大簡化了它們的形成過程。這些價廉的電子設備可被附著在各種物體表面上,包括植物、昆蟲、紙、布及人的皮膚。該研究成果刊登在《納米快報》上。
  • 我國科學家製備出手性可控的石墨烯納米帶
    石墨烯納米帶(GNR)是一種準一維的石墨烯納米結構,根據結構不同可表現出準金屬或半導體特性。GNR具有高遷移率和載流能力,且由於量子限域和邊緣效應,其能夠開啟帶隙。該特性使GNR有望成為包括納米尺度場效應電晶體、自旋電子器件和片內互連線在內的候選材料。但在絕緣襯底表面,可控地製備具有邊緣特異性的亞5納米寬的GNR仍是難題。
  • 完全由碳製成的金屬線:為碳基計算機奠定基礎
    導讀據美國加州大學伯克利分校官網近日報導,該校化學家和物理學家團隊創造出完全由碳製成的金屬線,為進一步開展研究以打造碳基電晶體奠定了基礎。背景如今,智慧型手機、筆記本電腦等電子產品在我們身邊隨處可見。技術金屬線(例如用於連接計算機晶片中電晶體的金屬通道)將電子從一個設備運送到另一個設備,並互連電晶體(計算機構建模塊)中的半導體元件。加州大學伯克利分校的小組一直致力於如何用石墨烯納米帶製造半導體和絕緣體。石墨烯納米帶是一維的、原子厚度的石墨烯窄帶。
  • 石墨烯RFID電子標籤具備怎樣的優勢
    諾沃肖洛夫爵士成功研發了高導電性能的石墨烯材料,石墨烯價格的下降和產品質量的提高極大地刺激下遊產品的應用研究,如各類導電線路、傳感器、醫學監視器等石墨烯電子產品層出不窮。由於石墨烯材料具有微觀拓撲結構,使之具備高導電性能,其導電機理與金屬銀微粒的導電機理不同。
  • 完全由碳製成的金屬線:為碳基計算機奠定基礎
    、筆記本電腦等電子產品在我們身邊隨處可見。技術金屬線(如用於連接計算機晶片中電晶體的金屬通道)將電子從一個設備運送到另一個設備,並互連電晶體(計算機構建模塊)中的半導體元件。加州大學伯克利分校的小組一直致力於如何用石墨烯納米帶製造半導體和絕緣體。石墨烯納米帶是一維的、原子厚度的石墨烯窄帶。石墨烯是一種完全由碳原子組成的結構,碳原子排列成相互連接的六角形圖案,類似於六角形網眼鐵絲網。
  • 『石墨烯 合成』新方法能夠在金屬氧化物表面上合成納米石墨烯
    德國、美國及波蘭、盧森堡的研究人員發現了一種在金屬氧化物表面形成納米石墨烯的方法。基於碳的納米結構是用於納米電子學的有前途的材料。然而,它們通常需要在非金屬表面上形成,迄今為止,這一直是材料學的一個挑戰。
  • 手性可控石墨烯納米帶製備成功
    近日,中國科學院上海微系統與信息技術研究所研究員王浩敏團隊關於六角氮化硼(h-BN)的研究取得新進展,首次在其表面成功製備出手性可控的石墨烯納米帶(GNR),並進行了輸運性質研究。相關研究成果已在線發表於《自然—材料》。
  • 半導體表面高效的石墨烯納米帶生產方法
    據國外媒體報導,石墨烯這種神奇的材料可以以各種形式用於各種用途,從可以驅蚊的透明膜到可以提高電池安全性的顆粒。科學家們對用於能量存儲和計算的納米帶特別感興趣,但生產這些超薄石墨烯帶被證明是一項艱巨的任務。然而,幾天前,一些科學家聲稱他們在這一領域取得了突破,他們首次發明了一種可以在半導體表面直接有效地製造石墨烯納米帶的方法。
  • 低成本、大規模生產石墨烯納米帶的新方法
    矽基電子器件正在接近極限,那麼後面哪種材料能接替矽繼續推動電子器件的發展呢?也許很多人會說是石墨烯,這種由碳原子組成的二維片狀材料,儘管其電子性能廣為人知,但石墨烯不具備在導電和非導電狀態之間轉換的能力,這種能力對於創造電晶體至關重要,而電晶體是所有電子學的基礎。
  • 我國研發出最高電導率的外爾半金屬材料 電導率達石墨烯的一千倍
    3月19日,材料領域國際頂級期刊《自然·材料》發表了復旦大學修發賢團隊最新研究論文——《外爾半金屬砷化鈮納米帶中的超高電導率》。論文指出,復旦大學修發賢團隊已製備出二維體系中具有目前已知最高電導率的外爾半金屬材料-砷化鈮納米帶。
  • 科學:納米帶從底部向上構建,為石墨烯的開關狀態鋪平了道路!
    科學:納米帶從底部向上構建,為石墨烯的開關狀態鋪平了道路!一種生長窄帶石墨烯的新方法,一種輕質且結實的單原子厚碳原子結構連接成六邊形,可以解決阻礙材料在電子應用中實現其全部潛力的缺點。石墨烯納米帶,僅十億分之一米寬,表現出與二維材料片不同的電子特性。
  • 納米科學:製造原子級納米帶!
    納米科學:製造原子級納米帶!研究人員已經邁出了將原子級精密石墨烯納米帶(APGNR)整合到非金屬基底上的第一個重要步驟。矽晶體是最常用於製造電晶體的半導體,電晶體是用於在計算中執行邏輯運算的關鍵電子元件。然而,隨著更快和更強大的處理器的產生,矽已達到性能極限:導電越快,溫度越高,導致過熱。
  • 石墨烯納米帶近年來成果集錦:7篇Science/Nature
    Science:金紅石TiO2基底上合成石墨烯納米帶原子級上精確控制的石墨烯納米帶GNR(graphene nanoribbon)材料目前由於其高度可調控的電子學、光學、載流子傳輸性能獲得了廣泛關注,但是目前合成石墨烯納米帶材料的方法一般基於在金屬表面上進行化學反應得到,由於金屬基底遮蓋了其電子結構,限制了其應用。橡樹嶺國家實驗室A.-P.
  • 物理所觀測到鋸齒形石墨烯納米帶邊緣導電
    利用掃描隧道顯微鏡,已經驗證了石墨烯鋸齒形邊緣處存在局域電子態,這種電子態會沿著邊緣方向一直延伸,但在垂直邊緣的方向迅速衰減;隨著石墨烯納米帶寬度的減小,兩個鐵磁性的邊緣局域電子態呈現反鐵磁耦合,進而伴隨著納米帶從金屬性向半導體性轉變。