函數y=(2x+1)(x+1)^2的導數y',y'',y'''

2020-12-23 吉祿學閣

主要內容:

通過函數乘積的求導公式,以及函數和的求導公式求函數y=(2x+1)(x+1)^2的一階、二階和三階導數。

一、一階導數:

函數乘積求導法。

∵y=(2x+1)(x+1)^2,

∴y'=2(x+1)^2+(2x+1)*2*(x+1),

=(x+1)(2x+2+4x+2),

=(x+1)(6x+4)

=6x^2+10x+4;

函數和求導法。

∵y=(2x+1)(x+1)^2,即:

y=(2x+1)(x^2+2x+1)

y=2x^3+4x^2+2x+x^2+2x+1,

y=2x^3+5x^2+4x+1,

∴y'=6x^2+10x+4.

二、高階導數

∵y'=6x^2+10x+4,

∴y''=12x+10,

y'''=12,y(4)=0,y(n)=0.

即該函數4階以上的導數都為0.

相關焦點

  • 導數的應用:畫函數y^3+y^2=2x的圖像
    本文主要內容:用導數來畫函數y^3+y^2=2x圖像的示意圖。※.函數的定義域函數表達式為y^3+y^2=2x,可知x可以取全體實數,即函數的定義域為:(-∞,+∞)。導數y'的符號與y(3y+2)的符號一致。函數的單調性為:(1).當y∈(-∞,-2/3)∪(0,+∞)時,y'>0,此時函數y為增函數;(2).當y∈[-2/3,0]時,y'<0,此時函數y為減函數。
  • z=f(x^2-y^2,ln(x-y))求z對x,y的偏導數
    主要內容:本文介紹全微分法和直接法,求解抽象函數z=f(x^2-y^2,ln(x-y)對x,y的一階偏導數dz/dx和dz/dy的具體步驟和過程。全微分法:對函數z求全微分得:dz=f1'(2xdx-2ydy)+f2'(1dx-1dy)/(x-y),即:dz=[2xf1'+f2』/(x-y)]dx-[2yf1'+f2』/(x-y)dy,根據全微分與偏導數的關係,得:dz/dx=2xf1'+f2』/(x-y),dz/dy=-[2yf1'+f2』/(
  • z=f(x^2-y^2,ln(x-y))求z對x,y的偏導
    主要內容:本文介紹全微分法和直接法,求解抽象函數z=f(x^2-y^2,ln(x-y)對x,y的一階偏導數dz/dx和dz/dy的具體步驟和過程。全微分法:對函數z求全微分得:dz=f1'(2xdx-2ydy)+f2'(1dx-1dy)/(x-y),即:dz=[2xf1'+f2』/(x-y)]dx-[2yf1'+f2』/(x-y)dy,根據全微分與偏導數的關係,得:dz/dx=2xf1'+f2』/(x-y),dz/dy=-[2yf1'+f2』/(
  • 怎麼求y=(2x^3+4x^2)/(x-1)^2的單調區間?
    主要內容通過導數知識,介紹求函數y=(2x^3+4x^2)/(x-1)^2的單調區間。※.函數的定義域∵x-1≠0,∴x≠1,即函數的定義域為:(-∞,1)∪(1,+∞)。※.函數的單調性∵y=(2x^3+4x^2)/(x-1)^2∴dy/dx=[(6x^2+8x)(x-1)^2-2(x-1)(2x^3+4x^2)]/(x-1)^4=[(6x^2+8x)(x-1)-2(2x^3+4x^2)]/(x-1)^3=[(6x^2+8x)(x-1)-2(2x^3+4x^2)]/(x-1)^3
  • 求y=√(x^2+1)+√(x-1)^2+1的最小值及x值
    主要內容:通過兩點間直線距離最短以及函數的導數,介紹求解根式和y=√(x^2+1)+√[(x-1)^2+1]最小值的步驟。主要公式:1.兩點間距離公式|AB|=√[(a1-b1)^2+(a2-b2)^2];2.冪函數導數公式:y=x^(1/2),則dy/dx=(1/2)x^(-1/2)。
  • 已知2/x+1/y=1,求x+y的最大值的四種方法
    主要內容:通過替換、柯西不等式、二次方程判別式及多元函數最值法等,介紹x+y在條件2/x+1/y=1下最大值的計算步驟。方法一:「1」的代換x+y=(x+y)(2/x+1/y)=(2+1+x/y+2y/x)利用均值不等式,則有:x+y≥(2+1+2√2)。
  • 了解一下,函數y=tanx+x的圖像是怎樣的?
    本文主要內容:通過導數這個工具及函數的定義域、奇偶性等知識介紹函數y=tanx+x圖像的畫法。02函數的單調性∵y=tanx+x∴dy/dx=(tanx)'+1>=sec^2x+1>0,即函數y在定義域上為單調增函數。
  • x^2/3+y^2/2+z^2/2=1,求x+y+z的取值範圍
    主要內容:通過柯西不等式、換元法及構造多元函數法,介紹x+y+z在滿足給定條件x^2/3+y^2/2+z^2/2=1下的取值範圍。主要公式:1.柯西不等式:(a^2+b^2)(c^2+d^2)≥(ac+bd)^2.
  • 當x=1時,計算y=x^2+x+1的增量和微分
    主要內容:本文介紹二次函數y=x^2+x+1在x=1時,自變量增量△x分別在1、0.1、0.01情形下增量和微分得計算步驟。主要步驟方法:y=x^2+x+1,方程兩邊同時求微分,得:dy=(2x+1)dx,此時函數的增量△y為:△y=(x+△x)^2+(x+△x)+1-(x^2+x+1),即:△y=(2x+1)△x+(△x)^2.對於本題已知x=1,則:dy=3dx,△y=3△x+(△x)^2。
  • 求圓x^2+y^2=4上點A(a,b)處切線的方法
    ,求解經過圓x^2+y^2=4上點A(1,√3)處切線的方法和步驟。  解法一:解析幾何法  設切線的斜率為k,則切線的方程為:  y-√3=k(x-1),  代入圓的方程得:  x^2+[k(x-1)+√3]^2=4  x^2+k^2(x-1)^2+2√3(x-1)k-1=0  (1+k^2)x^2-2k^2x+k^2+2√3kx-2√3k-1=0  (
  • 微分方程y〞+y=(sin2x+cos2x)e^2x怎麼解?
    >又因為λ+iw=2+2i,不是特徵方程的根,則設特解為:y1=(msin2x+ncos2x)e^2x;兩次求導得:y1'=(2mcos2x-2nsin2x)e^2x+2(msin2x+ncos2x)e^2x;
  • 求微分方程y''+y=(sin3x+cos3x)e^2x通解的方法
    本文主要內容,介紹求微分方程y''+y=(sin3x+cos3x)e^2x通解的方法。+2(msin3x+ncos3x)e^2x;=(3mcos3x-3nsin3x+2msin3x+2ncos3x)e^2x;=[(2m-3n)sin3x+(3m+2n)cos3x]e^2x。
  • 求助:x+y=y+x到底是不是方程?
    x+y=y+x既含有未知數,又是等式。我認為滿足定義的兩個條件,所以是方程。但是有人提出反對意見,認為x+y=y+x不是方程。原因是等式可以分為三類:一類是恆等式,如n+2n=3n,n取任何值等式都成立;第二類是矛盾等式,如m-1=m,m取任何值等式都不成立;第三類是條件等式,如3x=12,只有當x=4時等式才成立,這才是方程。
  • y=f(x)與x=f(y)是同一個函數?
    y=f(x)與x=f(y)是同一個函數?請先關注再下單學習微積分有什麼用?調查顯示:這些領域都已經和它息息相關了!(見另一專欄《微積分從入門到精通第一關——心理關》)x是常量還是變量?函數的概念對於中學生和大學新生來說從來似乎都沒有弄明白過,x和y在他們的眼中依然是代表數字的字母或者是未知量。(啥,難道不是代表數字的字母嗎?估計不少人懵逼了)是的,很多人在很長時間都一直會把x和y看作是代表數字的「字母」,這個一點問題都沒有。
  • 已知x=√2-1,y=√2+1,求x/y+y/x(代數式及其運算)
    題目已知x=√2-1,y=√2+1,求x/y+y/x。普通學生思路:因為√2+1與√2-1互為倒數,解題時可以不直接代入,先求出x+y與xy的值,最後整體代入求值。後進生策略:把√2+1與√2-1直接代入計算。
  • 兩種方法求函數y=(sinx)^(cosx)的導數
    主要內容:本文通過對函數兩邊同時取對數,以及冪指函數變底方法,介紹計算y=(sinx)^(cosx)的導數的主要步驟。方法一:取對數法∵y=(sinx)^(cosx)∴lny=cosx*lnsinx,兩邊同時求導,則:dy/y=-sinx*lnsinxdx+cosx*cosxdx/sinx=(-sinx*lnsinx+cosx*ctgx)dx即:dy/dx=(sinx)^(cosx)*(-sinx*lnsinx
  • 曲線方程y=e^(x+3y)圖像畫法
    本文主要內容,介紹隱函數y=e^(x+3y)圖像示意圖的畫法和步驟。所以,當y=1/3時,F(y)有最大值,即:x=F(y)≤F(y)max=-(1+ln3)x≤-(1+ln3)/1≈-2.10即曲線方程的定義域為:(-∞,-2.10]。
  • 20、函數y=Asin(ωx+φ)的圖像及應用
    相關結論考點自測函數y=Asin(ωx+φ)的圖象及變換 求函數y=Asin(ωx+φ)的解析式函數y=Asin(ωx+φ解題心得解決三角函數圖象與性質綜合問題的方法:先將y=f(x)化為y=asin x+bcos x的形式,再用輔助角公式化為y=Asin(ωx+φ)的形式,最後藉助y=Asin(ωx+φ)的性質(如周期性、對稱性、單調性等)解決相關問題.
  • 深度解析△y與dy之間的區別與聯繫
    在導數、微分中,△y與dy之間的區別與聯繫是一組需要重點區分的概念。如下圖所示。自變量在x=x0的基礎上,若增加△x,此時函數增量△y=f(x0+△x)-f(x0)。當函數f(x)在點x=x0處可導時,即函數f(x)在x=x0處存在一條切線,那麼微分dy=f'(x0) △x。由於默認自變量增量△x、dx均為一個單位,因此,△x=dx,進而dy=f'(x0)dx。從上可看出,△y描述的是函數的增量,dy描述的是切線的增量。如何判斷△y與dy之間的大小關係是一個有趣的話題。
  • 高中所學的導數公式大全
    圖一例如:x^3的導數為3x^2,x^(1/2)的導數1/2 x^(-1/2)=1/2√x。具體的做法有:y'=(arctanx+arcsinx)'=(arctanx)'+(arcsinx)'=1/(1+x^2) +1/√(1-x^2).