MOS管的構造及MOS管種類和結構

2021-01-08 電子發燒友
MOS管的構造及MOS管種類和結構

李倩 發表於 2018-08-16 10:36:30

隨著社會的進步和發展,MOS管在電子行業的應用越來越廣泛,薩科微電子SLKOR作為能夠研發生產碳化矽SiC產品的「碳化矽專家」,必須來科普一下這方面的知識。

MOS即 MOSFET的簡寫,全稱是金屬氧化物場效應電晶體。就是利用輸入迴路的電場效應來控制輸出迴路電流的一種半導體器件。MOS管的構造、原理、特性、符號規則和封裝種類等,大致如下。

1、MOS管的構造:

MOS管的構造是在一塊摻雜濃度較低的P型半導體矽襯底上,用半導體光刻、擴散工藝製作兩個高摻雜濃度的 N+區,並用金屬鋁引出兩個電極,分別作為漏極D和源極S。然後在漏極和源極之間的P型半導體表面復蓋一層很薄的二氧化矽(Si02)絕緣層膜,在再這個絕緣層膜上裝上一個鋁電極,作為柵極G。這就構成了一個N溝道(NPN 型)增強型MOS管。它的柵極和其它電極間是絕緣的。

同樣用上述相同的方法在一塊摻雜濃度較低的N型半導體矽襯底上,用半導體光刻、擴散工藝製作兩個高摻雜濃度的P+區,及上述相同的柵極製作過程,就製成為一個P溝道(PNP型)增強型MOS管。圖1-1所示(a )、(b)分別是P溝道MOS管道結構圖和代表符號。

2、MOS 管的工作原理:

從圖1-2-(a)可以看出,增強型MOS管的漏極D和源極S之間有兩個背靠背的PN結。當柵-源電壓VGS=0 時,即使加上漏-源電壓VDS,總有一個PN結處於反偏狀態,漏-源極間沒有導電溝道(沒有電流流過),所以這時漏極電流ID=0。此時若在柵-源極間加上正向電壓,圖 1-2-(b)所示,即VGS>0,則柵極和矽襯底之間的SiO2絕緣層中便產生一個柵極指向P型矽襯底的電場,由於氧化物層是絕緣的,柵極所加電壓 VGS無法形成電流,氧化物層的兩邊就形成了一個電容,VGS等效是對這個電容充電,並形成一個電場,隨著VGS逐漸升高,受柵極正電壓的吸引,在這個電容的另一邊就聚集大量的電子並形成了一個從漏極到源極的N型導電溝道,當VGS大於管子的開啟電壓VT(一般約為2V)時,N溝道管開始導通,形成漏極電流ID,我們把開始形成溝道時的柵-源極電壓稱為開啟電壓,一般用VT表示。控制柵極電壓VGS的大小改變了電場的強弱,就可以達到控制漏極電流 ID的大小的目的,這也是MOS管用電場來控制電流的一個重要特點,所以也稱之為場效應管。

3、MOS 管的特性:

上述MOS管的工作原理中可以看出,MOS管的柵極G和源極S之間是絕緣的,由於SiO2絕緣層的存在,在柵極G和源極S之間等效是一個電容存在,電壓VGS產生電場從而導致源極-漏極電流的產生。此時的柵極電壓VGS決定了漏極電流的大小,控制柵極電壓VGS的大小就可以控制漏極電流ID的大小。這就可以得出如下結論:

1) MOS 管是一個由改變電壓來控制電流的器件,所以是電壓器件。

2) MOS 管道輸入特性為容性特性,所以輸入阻抗極高。

4、MOS 管的電壓極性和符號規則:

圖1-4-(a)是N溝道MOS管的符號,圖中D是漏極,S是源極,G是柵極,中間的箭頭表示襯底,如果箭頭向裡表示是N溝道的MOS管,箭頭向外表示是 P溝道的MOS管。

實際在MOS管生產的過程中襯底在出廠前就和源極連接,所以在符號的規則中,表示襯底的箭頭也必須和源極相連接,以區別漏極和源極。圖1-4-(c)是P溝道MOS管的符號。MOS管應用電壓的極性和我們普通的晶體三極體相同,N溝道的類似NPN晶體三極體,漏極D接正極,源極S接負極,柵極G正電壓時導電溝道建立,N溝道MOS管開始工作,如圖1-4-(b)所示。同樣P道的類似PNP晶體三極體,漏極D接負極,源極S接正極,柵極G負電壓時,導電溝道建立,P溝道MOS管開始工作,如圖1-4-(d)所示。               

N溝道MOS管符號圖1-4-(a)

N溝道MOS管電壓極性及襯底連接1-4-(b)

(c)

(d)

P溝道MOS管符號圖1-4-(c)

P溝道MOS管電壓極性及襯底連接1-4-(d)

MOS管是金屬(metal)—氧化物(oxide)—半導體(semiconductor)場效應電晶體,或者稱是金屬—絕緣體(insulator) —半導體。MOS管的source和drain是可以對調的,他們都是在P型backgate中形成的N型區。在多數情況下,這個兩個區是一樣的,即使兩 端對調也不會影響器件的性能。這樣的器件被認為是對稱的。目前在市場應用方面,排名第一的是消費類電子電源適配器產品。而MOS管的應用領域排名第二的是計算機主板、NB、計算機類適配器、LCD顯示器等產品,隨著國情的發展計算機主板、計算機類適配器、LCD顯示器對MOS管的需求有要超過消費類電子電源適配器的現象了。第三的就屬網絡通信、工業控制、汽車電子以及電力設備領域了,這些產品對於MOS管的需求也是很大的,特別是現在汽車電子對於MOS管的需求直追消費類電子了。

下面對MOS失效的原因總結以下六點,然後對1,2重點進行分析:1:雪崩失效(電壓失效),也就是我們常說的漏源間的BVdss電壓超過MOSFET的額定電壓,並且超過達到了一定的能力從而導致MOSFET失效。2:SOA失效(電流失效),既超出MOSFET安全工作區引起失效,分為Id超出器件規格失效以及Id過大,損耗過高器件長時間熱積累而導致的失效。3:體二極體失效:在橋式、LLC等有用到體二極體進行續流的拓撲結構中,由於體二極體遭受破壞而導致的失效。4:諧振失效:在並聯使用的過程中,柵極及電路寄生參數導致震蕩引起的失效。5靜電失效:在秋冬季節,由於人體及設備靜電而導致的器件失效。6:柵極電壓失效:由於柵極遭受異常電壓尖峰,而導致柵極柵氧層失效。雪崩失效分析(電壓失效)到底什麼是雪崩失效呢,簡單來說MOSFET在電源板上由於母線電壓、變壓器反射電壓、漏感尖峰電壓等等系統電壓疊加在MOSFET漏源之間,導致的一種失效模式。簡而言之就是由於就是MOSFET漏源極的電壓超過其規定電壓值並達到一定的能量限度而導致的一種常見的失效模式。下面的圖片為雪崩測試的等效原理圖,做為電源工程師可以簡單了解下。 

可能我們經常要求器件生產廠家對我們電源板上的MOSFET進行失效分析,大多數廠家都僅僅給一個EAS.EOS之類的結論,那麼到底我們怎麼區分是否是雪崩失效呢,下面是一張經過雪崩測試失效的器件圖,我們可以進行對比從而確定是否是雪崩失效。雪崩失效的預防措施雪崩失效歸根結底是電壓失效,因此預防我們著重從電壓來考慮。具體可以參考以下的方式來處理。1:合理降額使用,目前行業內的降額一般選取80%-95%的降額,具體情況根據企業的保修條款及電路關注點進行選取。2:合理的變壓器反射電壓。3:合理的RCD及TVS吸收電路設計。4:大電流布線儘量採用粗、短的布局結構,儘量減少布線寄生電感。5:選擇合理的柵極電阻Rg。6:在大功率電源中,可以根據需要適當的加入RC減震或齊納二極體進行吸收。 

SOA失效(電流失效)再簡單說下第二點,SOA失效SOA失效是指電源在運行時異常的大電流和電壓同時疊加在MOSFET上面,造成瞬時局部發熱而導致的破壞模式。或者是晶片與散熱器及封裝不能及時達到熱平衡導致熱積累,持續的發熱使溫度超過氧化層限制而導致的熱擊穿模式。關於SOA各個線的參數限定值可以參考下面圖片。

1:受限於最大額定電流及脈衝電流2:限於最大節溫下的RDSON。3:受限於器件最大的耗散功率。4:受限於最大單個脈衝電流。5:擊穿電壓BVDSS限制區我們電源上的MOSFET,只要保證能器件處於上面限制區的範圍內,就能有效的規避由於MOSFET而導致的電源失效問題的產生。。

1:確保在最差條件下,MOSFET的所有功率限制條件均在SOA限制線以內。2:將OCP功能一定要做精確細緻。在進行OCP點設計時,一般可能會取1.1-1.5倍電流餘量的工程師居多,然後就根據IC的保護電壓比如0.7V開始調試RSENSE電阻。有些有經驗的人會將檢測延遲時間、CISS對OCP實際的影響考慮在內。但是此時有個更值得關注的參數,那就是MOSFET的Td(off)。它到底有什麼影響呢,我們看下面FLYBACK電流波形圖(圖形不是太清楚,十分抱歉,建議雙擊放大觀看)。

從圖中可以看出,電流波形在快到電流尖峰時,有個下跌,這個下跌點後又有一段的上升時間,這段時間其本質就是IC在檢測到過流信號執行關斷後,MOSFET本身也開始執行關斷,但是由於器件本身的關斷延遲,因此電流會有個二次上昇平臺,如果二次上昇平臺過大,那麼在變壓器餘量設計不足時,就極有可能產生磁飽和的一個電流衝擊或者電流超器件規格的一個失效。3:合理的熱設計餘量,這個就不多說了,各個企業都有自己的降額規範,嚴格執行就可以了,不行就加散熱器。

在使用MOS管設計開關電源或者馬達驅動電路的時候,大部分人都會考慮MOS的導通電阻,最大電壓等,最大電流等,也有很多人僅僅考慮這些因素。這樣的電路也許是可以工作的,但並不是優秀的,作為正式的產品設計也是不允許的。

1、MOS管種類和結構

MOSFET管是FET的一種(另一種是JFET),可以被**成增強型或耗盡型,P溝道或N溝道共4種類型,但實際應用的只有增強型的N溝道MOS管和增強型的P溝道MOS管,所以通常提到NMOS,或者PMOS指的就是這兩種。

至於為什麼不使用耗盡型的MOS管,不建議刨根問底。

對於這兩種增強型MOS管,比較常用的是NMOS。原因是導通電阻小,且容易。所以開關電源和馬達驅動的應用中,一般都用NMOS。下面的介紹中,也多以NMOS為主。

在使用MOS管設計開關電源或者馬達驅動電路的時候,大部分人都會考慮MOS的導通電阻,最大電壓等,最大電流等,也有很多人僅僅考慮這些因素。這樣的電路也許是可以工作的,但並不是優秀的,作為正式的產品設計也是不允許的。

1、MOS管種類和結構

MOSFET管是FET的一種(另一種是JFET),可以被**成增強型或耗盡型,P溝道或N溝道共4種類型,但實際應用的只有增強型的N溝道MOS管和增強型的P溝道MOS管,所以通常提到NMOS,或者PMOS指的就是這兩種。

至於為什麼不使用耗盡型的MOS管,不建議刨根問底。

對於這兩種增強型MOS管,比較常用的是NMOS。原因是導通電阻小,*。所以開關電源和馬達驅動的應用中,一般都用NMOS。下面的介紹中,也多以NMOS為主。

打開APP閱讀更多精彩內容

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴

相關焦點

  • 功率MOS管燒毀的原因(米勒效應)
    Mos是電壓驅動型器件,只要柵極和源級間給一個適當電壓,源級和漏級間通路就形成。這個電流通路的電阻被成為mos內阻,就是導通電阻<Rds(on)>。這個內阻大小基本決定了mos晶片能承受的最大導通電流(當然和其它因素有關,最有關的是熱阻)。內阻越小承受電流越大(因為發熱小)。
  • MOS管常見使用方法
    1.物理特性 MOS管分為N溝道和P溝道的形式,N溝道和P溝道都有增強型和耗盡型兩種。耗盡型與增強型的主要區別在於耗盡型MOS管在G端(Gate)不加電壓時有導電溝道存在,而增強型MOS管只有在開啟後,才會出現導電溝道;兩者的控制方式也不一樣,耗盡型MOS管的VGS(柵極電壓)可以用正、零、負電壓控制導通,而增強型MOS管必須使得VGS>VGS(th)(柵極閾值電壓)才行。
  • 三極體和MOS管的區別
    要真正理解得了解雙極電晶體和mos電晶體的工作方式才能明白。三極體工作時,兩個pn結都會感應出電荷,當做開關管處於導通狀態時,三極體處於飽和狀態,如果這時三極體截至,pn結感應的電荷要恢復到平衡狀態,這個過程需要時間。而mos三極體工作方式不同,沒有這個恢復時間,因此可以用作高速開關管。 (1)場效應管是電壓控制元件,而電晶體是電流控制元件。
  • 功率mos管為何會被燒毀?都進來看看!
    Gs極加電容,減慢mos管導通時間,有助於減小米勒振蕩。防止mos管燒毀。 比如一個mos最大電流100a,電池電壓96v,在開通過程中,有那麼一瞬間(剛進入米勒平臺時)mos發熱功率是P=V*I(此時電流已達最大,負載尚未跑起來,所有的功率都降落在MOS管上),P=96*100=9600w!
  • MOS管自舉電路工作原理及升壓自舉電路結構圖
    MOS管自舉電路介紹:自舉電路也叫升壓電路,是利用自舉升壓二極體,自舉升壓電容等電子元件,使電容放電電壓和電源電壓疊加,從而使電壓升高。有的電路升高的電壓能達到數倍電源電壓。常用自舉電路(摘自fairchild,使用說明書AN-6076《供高電壓柵極驅動器IC 使用的自舉電路的設計和使用準則》)the boost converter,或者叫step-up converter,是一種開關直流升壓電路,它可以是輸出電壓比輸入電壓高。假定那個開關(三極體或者mos管)已經斷開了很長時間,所有的元件都處於理想狀態,電容電壓等於輸入電壓。
  • 器件發熱導致的MOS管損壞之謎,終於解開了
    MOS管發熱原因由超出安全區域引起發熱而導致的。發熱的原因分為直流功率和瞬態功率兩種。直流功率原因:外加直流功率而導致的損耗引起的發熱導通電阻RDS(on)損耗(高溫時RDS(on)增大,導致一定電流下,功耗增加)由漏電流IDSS引起的損耗(和其他損耗相比極小)瞬態功率原因:外加單觸發脈衝負載短路開關損耗(接通、斷開) *(與溫度和工作頻率是相關的)內置二極體的trr損耗(上下橋臂短路損耗)(與溫度和工作頻率是相關的)器件正常運行時不發生的負載短路等引起的過電流
  • mos管導通壓降多大?
    打開APP mos管導通壓降多大?   和電晶體不一樣,MOS管的參數中沒有直接給出管壓降,而是給出導通電阻Rds(on),SI2301的導通電阻在Dd=3.6A時是85mΩ,在Id=2A時是115mΩ,這樣可算出它的管壓降在3.6A和2A時分別為0.306V
  • N溝道與P溝道MOS管
    項目中最常用的為增強型mos管,分為N溝道和P溝道兩種。
  • MOS管開關時的米勒效應--通俗易懂篇
    米勒效應指在MOS管開通過程會產生米勒平臺,原理如下。理論上驅動電路在G級和S級之間加足夠大的電容可以消除米勒效應。但此時開關時間會拖的很長。一般推薦值加0.1Ciess的電容值是有好處的。下圖中粗黑線中那個平緩部分就是米勒平臺。
  • MOS管的發展歷程
    1MOS的起源 MOS管的全稱是金屬-氧化物-半導體場效應電晶體。MOS管的發明最早可以追溯到19世紀30年代,由德國人提出了Lilienfeld場效應電晶體的概念,之後貝爾實驗室的肖特基發明者Shcokley等人也嘗試過研究發明場效應管,但是都失敗了。1949年Shcokley提出了注入少子的雙極性電晶體的概念。到了1960年,有人提出用二氧化矽改善雙極性電晶體的性能,就此MOS管來到了人世間。
  • EDA365:新手該如何選擇高性能的MOS管器件?
    在一些電路的設計中,不光是開關電源電路中,經常會使用MOS管,正確選擇MOS管是硬體工程師經常遇到的問題,更是很重要的一個環節,MOS管選擇不好有可能影響到整個電路的效率和成本。那麼新手該如何選擇高性能的MOS管呢?
  • 電子工程師都應該掌握的MOS管知識
    另一種電晶體叫做場效應管 (FET) ,把輸入電壓的變化轉化為輸出電流的變化。FET的增益等於它的transconductance, 定義為輸出電流的變化和輸入電壓變化之比。市面上常有的一般為N溝道和P溝道,而P溝道常見的為低壓MOS管。 場效應管通過投影一個電場在一個絕緣層上來影響流過電晶體的電流。
  • 新潔能場效應管NCE80H12在電動車控制器中的功能和用途
    大家好,今天來給大家介紹下場效應管NCE80H12在電動車控制器中的功能和用途。新潔能MOS管NCE80H12是一款漏源電壓可達80V,連續漏極電流120A的TO-220封裝的N溝道直插MOS管。MOS管是電壓驅動型器件,只要柵極G和源級S間給一個適當電壓,源級S和D間導電通路就形成。這個電流通路的電阻被稱為MOS管內阻,也就是導通電阻。這個內阻大小基本決定了MOS管晶片能承受得多大導通電流(當然和其它因素有關,如熱阻)。內阻越小承受電流越大(因為發熱小)。
  • 30A的MOS現在價格都下探到1塊了,為什麼你還在用繼電器?
    至於內阻已經可以和繼電器拼了,不久的將來會淘汰繼電器的,電動汽車就是繼電器的終結者。攻城獅小李:我修過一臺大巴,因為大燈常亮不能關閉,經過很曲折才找到原因,故障就是 mos 管壞了,要把控制電腦拆下除膠焊接才能修好,還罵哪個設計師把大燈繼電器都省了,這不是害人嗎?攻城獅小王:性能 mos 完勝,穩定性繼電器完勝。
  • USB PD大功率快充移動電源中MOS管的應用方案
    USB PD大功率快充移動電源中MOS管的應用方案一、快充與場效應管消費電子市場的火爆場面拉動了快充的內需,而快充的興起也帶動了MOSFET的需求增長。用於整流同步的MOS管,可以保證在快充電源提高電壓來達到高電流高功率充電時的用電安全性。而低電壓高電流充電的「閃充」對整流同步的MOS管要求更為嚴苛,MOS管用量也呈上升趨勢。
  • MOS管和IGBT管的區別.
    在電子電路中,MOS管和IGBT管會經常出現,它們都可以作為開關元件來使用,MOS管和IGBT管在外形及特性參數也比較相似,那為什麼有些電路用
  • 筋膜槍原理與筋膜槍方案,和筋膜槍燒mos管原理
    由乳酸堆積和肌肉微細結構破壞所致,人一般在運動完12-48小時後會出現肌肉酸痛的現象,這種我們稱之為遲發性肌肉酸痛,主要是因為運動前後沒有對身體肌肉做適當的拉伸和按摩而造成的。所以平時我們運動健身後一定要記得放鬆筋骨肌肉,如果覺得太累不想再動也可利用筋膜槍來代替。
  • 且看MOS管的GS波形分析!
    對於咱們電源工程師來講,我們很多時候都在看波形,看輸入波形,MOS開關波形,電流波形,輸出二極體波形,晶片波形,MOS管的GS波形,我們拿開關GS波形為例來聊一下GS的波形。 我們測試MOS管GS波形時,有時會看到下圖中的這種波形,在晶片輸出端是非常好的方波輸出。但一旦到了MOS管的G極就出問題了,有振蕩,這個振蕩小的時候還能勉強過關,但是有時候振蕩特別大,看著都教人擔心會不會重啟。
  • 基於數字D類音頻功放的音頻設備中MOS管的解決方案
    基於D類音頻功放的設備中MOS管解決方案數字D類音頻功率放大器消費者們越來越在意其購入的音頻設備的便攜性、智能程度和時尚性,不管是最近華為與直流電源V15、電阻R13、MOSFET電晶體M13組成的移位電平和MOSFET電晶體M14、電阻R11、直流電源V14組成的移位電平可以放大PWM波,增強MOS管驅動能力。這裡MOS管選用的是BSS138,Vds=60V,ID=0.25A,具有輸入電容小、關斷延遲時間短等優點。
  • 什麼是MOS管?MOS管有什麼優勢?
    MOS管是金屬 (metal) — 氧化物 (oxide) — 半導體 (semiconductor) 場效應電晶體,或者稱是金屬 — 絕緣體 (insulator) — 半導體。MOS管的source和drain是可以對調的,他們都是在P型backgate中形成的N型區。