歡迎來到百家號「米粉老師說數學」,在三角形函數應用題中,四捨五入取近似值,是對計算結果處理的最常見的方法,幾乎每道三角函數應用題都會涉及到,但在這類題目中,「四捨五入取近似值」卻很有講究,不注意,常常會導致步驟結果會扣分,這是怎麼一回事呢?請看下面例題詳解。
例:
【解析】
這是一道很普通且難度一般的三角函數方位角應用題,下面介紹兩種解題過程,來看看有何不同?
【點評】
從解題方法上,兩種解法大同小異,但為什麼最後的結果卻各有不同,仔細看下解法以1:在計算x值時,數據「87」是四捨五入後的結果,即第一次採用了近似值,在最後計算AC長時,再一次採用四捨五入取近似值,取了兩次近似值,這樣計算的偏差就產生了。如果我們把第一次的四捨五入去掉,即x不取87,而取更真實的計算結果:87.3711,最後計算AC時,應是:AC=87.3711÷sin25°≈207,計算偏差就消失了。可見,上述的計算結果的偏差,並不是由於採用不同的解法或過程導致的,而是由於多次取近似值造成的。所以,在以後的類似計算中,把握一個原則:只在最後的計算結果取近似值,步驟過程中遇到涉及有除不盡的情況,小數點後保留幾位,參照題目提供數的標準,最好不要步驟過程中按題目要求的精確方法取近似值。另外,列綜合式,把計算都留到最後,是完全可以避免這種情況的發生。請注意,千萬別小瞧這個結果分的1分,在中考關鍵分段中,1分可能會拉開成百上千人的距離。
歡迎點評留言,探討與辯論,會讓數學更具魅力!請繼續關注百家號「米粉老師說數學」,將為你呈上更豐盛的數學大餐,謝謝!