圖片摘自:www.nationofchange.org
2016年8月3日 訊 /生物谷BIOON/ --我們是否應該告誡消費者過度攝入肉類會引發和過度吃糖一樣的後果呢?最近刊登在國際雜誌BMC Nutrition上的一項研究報告中,來自阿德萊德大學的研究人員就提出了這樣的問題,研究者表示,現代飲食中肉類為我們帶來了過剩的能量,而這往往會引發全球人群肥胖的流行。
文章中研究者對170個國家的人群進行研究,揭示了肉類消耗和人群肥胖率之間的關聯;Maciej Henneberg教授表示,我們的研究發現可能是具有爭議性的,因為肉類引發的全球肥胖流行同糖類引發的肥胖流行程度相同,在一個國家裡糖類的攝入可以解釋50%肥胖變化,而與此同時肉類的消耗或許就解釋另外50%的人群肥胖變化,當修正了國家的財富、人群熱量消耗、城市化水平及體力活動不足後(這些因素是主要的肥胖誘發因素),糖類的利用依然是重要的因素,其對肥胖的貢獻比率為13%,而肉類的貢獻比例同為13%。
研究者指出,公眾應當警惕飲食中過多糖類及脂肪的攝入,基於相關研究我們認為,人類飲食中的肉類蛋白在引發肥胖中也扮演著關鍵的角色。博士Wenpeng You表示,脂肪和碳水化合物,尤其是脂肪,其是引發肥胖的主要因素;不管我們喜歡與否,現代飲食中脂肪和碳水化合物都為我們提供了足夠的能量來滿足我們日常需求,由於機體對肉類蛋白的消化晚於脂肪和碳水化合物,因此這就使得消化肉類轉化的能量成為機體過剩的能量,而這些過剩的能量隨後就會被轉化並且以脂肪的形式儲存於機體中。
目前有其它學術論文也指出,肉類的消耗和肥胖相關,但研究者常常認為肉中的脂肪是引發問題的罪魁禍首,相反,本文研究者認為肉類中的蛋白是直接引發肥胖的原因。Henneberg說道,本文研究結果提示,我們維持高脂肪和高碳水化合物飲食或許是不合適的,很明顯這對人類的機體健康非常不利。
儘管如此,研究者表示,肉類的消耗讓我們變得肥胖,我們應當去理解這背後發生的原因,當今社會,為了有效抑制肥胖我們或許應該採取一些有意的膳食指南建議來指導日常的飲食,比如少吃肉、少吃糖等。(生物谷Bioon.com)
本文系生物谷原創編譯整理,歡迎轉載!點擊 獲取授權 。更多資訊請下載生物谷APP.
Meat consumption providing a surplus energy in modern diet contributes to obesity prevalence: an ecological analysis
Wenpeng YouEmail author and Maciej Henneberg
Background Excessive energy intake has been identified as a major contributor to the global obesity epidemic. However, it is not clear whether dietary patterns varying in their composition of food groups contribute. This study aims to determine whether differences in per capita availability of the major food groups could explain differences in global obesity prevalence. Methods Country-specific Body Mass Index (BMI) estimates (mean, prevalence of obesity and overweight) were obtained. BMI estimates were then matched to mean of three year-and country-specific availability of total kilocalories per capita per day, major food groups (meat, starch, fibers, fats and fruits). The per capita Gross Domestic Product (GDP) and prevalence of physical inactivity for each country were also obtained. SPSS was used for log-transformed data analysis. Results Spearman analyses of the different major food groups shows that meat availability is most highly correlated with prevalence of obesity (r = 0.666, p < 0.001) and overweight (r = 0.800, p < 0.001) and mean BMI (r = 0.656, p < 0.001) and that these relationships remain when total caloric availability, prevalence of physical inactivity and GDP are controlled in partial correlation analysis. Stepwise multiple linear regression analysis indicates that meat availability is the most significant predictors of prevalence of obesity and overweight and mean BMI among the food groups. Scatter plot diagrams show meat and GDP adjusted meat are strongly correlated to obesity prevalence. Conclusion High meat availability is correlated to increased prevalence of obesity. Effective strategies to reduce meat consumption may have differential effects in countries at different stages of the nutrition transition.