拓撲絕緣體究竟是什麼東西?為什麼這麼受科學家青睞?

2020-12-11 意想不到的化學

拓撲絕緣體自2007年被發現以來,逐漸成為了凝聚態物理領域的一個的新熱點,並被認為是繼石墨烯(2010年諾貝爾物理學獎)之後的」Next Big Thing」。它對於基礎物理的理解以及半導體器件的應用都有很大的價值, 2016年,大衛·索利斯(David J. Thouless)、鄧肯·霍爾丹(F. Duncan M. Haldane)和麥可·科斯特利茨(J. Michael Kosterlitz)共同獲得了諾貝爾物理學獎,以表彰他們在理論上發現了物質的拓撲相變和拓撲相。那麼拓撲絕緣體究竟是什麼呢?我們一起來科普一下吧。

什麼是拓撲絕緣體?

按照導電性質的不同,材料可分為「導體」和「絕緣體」兩大類;而更進一步,根據電子態的拓撲性質的不同,「絕緣體」和「導體」還可以進行更細緻的劃分。拓撲絕緣體就是根據這樣的新標準而劃分的區別於其他普通絕緣體的一類絕緣體。

因而,拓撲絕緣體的體內與人們通常認識的絕緣體一樣,是絕緣的,但是在它的邊界或表面總是存在導電的邊緣態,這是它有別於普通絕緣體的最獨特的性質。這樣的導電邊緣態在保證一定對稱性(比如時間反演對稱性)的前提下是穩定存在的,而且不同自旋的導電電子的運動方向是相反的,所以信息的傳遞可以通過電子的自旋,而不像傳統材料通過電荷來傳遞。

簡言之,拓撲絕緣體的內部是絕緣體,然而表面卻有被拓撲保護的電子態。這個電子態的維度比內部要低1個維度(比如對一個3維絕緣體,表面電子態就是2維),而且有很多新奇的性質。也正是這些性質,使得它有可能被廣泛的應用

拓撲絕緣體的作用

所謂電阻,就是電子的運動被某些東西給碰撞阻礙,使其運動受阻的宏觀表現。假設,哆啦A夢代表電子,胖虎是來撞他的雜質,那麼拓撲絕緣體的表面電子防止被雜質散射的過程可以形象地表示為電子是否能背向散射(彈回去)。正是這個性質導致了低電阻,而內部是絕緣體又防止了漏電,從而製造的器件以低功耗運行,使得拓撲絕緣體在半導體器件應用領域有潛在的價值。

拓撲絕緣體的電子運動不符合通常金屬電子色散關係E=k^2/2m,而是E=v*k,v就是電子運動的速率(已假定k0=0)。注意對光而言,有E=c*k成立,其中c為光速,所以我們說,電子的運動方式,不像非相對論的粒子,而像光,只是速率不同。也正是這個性質,使得電子對於外界電場有很靈敏的響應,從而可以作為半導體器件(比如場效應管)的基礎。

新一代拓撲絕緣體

六硼化釤是一個典型的中間價化合物,其中Sm2+和Sm3+的比率為三比七。它屬於一種近藤絕緣體,在高溫下(高於50 K),它的屬性是典型的近藤金屬,強電子散射使其具有金屬導電性,而在低溫下,它表現為具有窄約4-14毫電子伏特帶隙的非磁性的絕緣層。SMB6伴隨著由熱導率急劇增加使冷卻引起的金屬-絕緣體轉變,峰值在約15 K,增加的原因是電子低溫下無助於熱導率,使佔主導地位的電子濃度的減少降低電子-聲子散射率。

一項新的研究指出,它可能是一個拓撲絕緣體。只是目前沒有可信的文獻證實。

如果這樣的理論得到證實,我相信未來諾貝爾物理學獎的名單上必將再次寫上中國人的姓名!

哈哈哈我是小意,非常感謝大家的閱讀,喜歡小意的可以點一下關注哦,每天都會科普化學元素小知識哦~~O(∩_∩)O

(本文章素材來源於網絡,旨在科普趣味知識,不代表個人觀點。)

相關焦點

  • 物理史上首份「拓撲圖鑑」,鋪平科學家尋找拓撲絕緣體之路
    想像一種電阻值不受長度、橫截面積影響的導體;想像一臺放在你桌面的量子計算機;想像一種甚至不靠電流傳遞電信號的元件——這些就是拓撲材料在我們生活中的潛在應用。但是,由於涉及到對能級計算、對性質的構想,尋找新的拓撲絕緣體通常是一個艱苦的過程。
  • 浙大科學家首次突破光學拓撲絕緣體研究,太赫茲互聯技術劍指6G
    而拓撲光學是一個新興的方向,它將拓撲自由度引入光學系統,從根本上改變人們對光的認識和利用。楊怡豪告訴 DeepTech :「其實,光學拓撲絕緣體是電子拓撲絕緣體的泛式,它將電子拓撲絕緣體的概念運用到光學上。」
  • 一種新的量子材料——拓撲絕緣體
    拓撲絕緣體就是根據這樣的新標準而劃分的區別於其他普通絕緣體的一類絕緣體。因而,拓撲絕緣體的體內與人們通常認識的絕緣體一樣,是絕緣的,但是在它的邊界或表面總是存在導電的邊緣態,這是它有別於普通絕緣體的最獨特的性質。
  • 拓撲近藤絕緣體
    作為稀土元素的化合物,SmB6中Sm的f-殼層電子提供了局域磁矩並導致了強相互作用,d帶的巡遊電子和這些局域電子軌道進行雜化,從而在費米能處打開了一個能隙,使得SmB6成為絕緣體[3,4]。如果把這個強關聯近藤絕緣體的能帶結構映射到等同於常規拓撲絕緣體的狀態[5],就會發現在近藤絕緣體的基態下,體態的電子結構出現了能帶反轉,同時表面出現了拓撲保護的導電態[5]。
  • 量子氣體中的神秘現象:邊緣導電的拓撲絕緣體!
    背景2016年諾貝爾物理學獎授予了三位科學家:戴維·索利斯(David J.Thouless)、鄧肯·霍爾丹(F. Duncan M. Haldane)和麥可·科斯特利茨(J. Michael Kosterlitz),以表彰他們在拓撲相變和物質拓撲相方面的開創性工作。
  • 有機拓撲絕緣體,可否圓夢成真?
    弱相互作用主導的有機材料能否展現拓撲絕緣性質?如何尋找和設計有機拓撲絕緣體? (a)傳統絕緣體和拓撲絕緣體的能級結構;(b)理論預測的兩類有機拓撲絕緣體的晶格結構示意圖。
  • 拓撲絕緣體的一個新突破
    但有一種神奇的材料,它的內部是絕緣的,界面卻是可以導電的,這種材料被稱為拓撲絕緣體。自發現以來,拓撲絕緣體一直是凝聚態物理的研究熱點。 拓撲絕緣體的能帶示意圖。通常絕緣體的導帶(conduction band)與價帶(valence band)之間存在能隙,電子無法傳導,而在拓撲絕緣體的表面存在一些位於能隙間的量子態——拓撲表面態(topological surface state),允許電子傳導。
  • 新拓撲絕緣體有可預測的最大能隙
    原標題:新拓撲絕緣體有可預測的最大能隙 美國猶他大學的研究人員創建出一種新的拓撲絕緣體,其可作為矽半導體頂部金屬層的特殊材料,將使超高速計算機在室溫下執行快速運算成為可能。該項研究成果刊登在近日美國《國家科學院學報》上。
  • 科學家發現新的新的拓撲絕緣體—鉍
    Vergniory,發現了一類新的材料:高階拓撲絕緣體,相關研究成果近期已發表在了《自然物理學》雜誌上,題為《鉍中的高階拓撲》。理論物理學家首先預測了這些絕緣體的存在,這些絕緣體在晶體邊緣具有導電性能而不是在其表面上,並且具有導電性而不會消散的特性。 現在,這些新特性在鉍中通過實驗證明。
  • 深入了解拓撲絕緣體:電子的自旋和動量緊密地聯繫在一起!
    一種稱為拓撲絕緣體的特定材料,部分類似於其中一種,部分類似於另一種,行為類似於表面上的導體和內部絕緣體。由於拓撲絕緣體具有獨特電子特性,以及它們在自旋電子器件中的潛在用途,甚至可以作為量子計算機的電晶體,美國能源部(DOE)Argonne國家實驗室的科學家們對研究這些材料中導電錶面電子兩種特性之間的特殊關係很感興趣。
  • 取出拓撲絕緣體表面態
    拓撲絕緣體輸運 毫無疑問,要說凝聚態物理過去十年最重要的物理發現是什麼,拓撲絕緣體(topological insulator, TI )一定排列前三位。我們總是能夠回憶起過去若干年張首晟老師在很多場合那激情洋溢的演講,告訴我們 TIs 在物理上是多麼有趣、應用上是多麼可期。
  • 拓撲絕緣體研究獲進展
    該論文第一作者,現為杜克大學博士後的楊可松解釋說,這項工作的原始思想是尋找一種簡易並有效的方法從海量電子結構資料庫中尋找拓撲絕緣體。他們通過定義負能隙表徵反轉能帶結構以識別拓撲絕緣體,並通過分析自旋軌道耦合的物理本質,進而發現拓撲絕緣體在能帶反轉點(動量空間)的能隙差值(非自旋軌道耦合和自旋軌道耦合計算之間的差值,ΔEk)隨著晶格參數的略微變化近乎不變或者變化相對較小。
  • 祁曉亮:我的拓撲絕緣體之路
    從這篇論文開始,我開始在張首晟老師的指導下,一步步走入拓撲絕緣體這個全新的領域。在這個領域中,拓撲學和簡單的絕緣體物理的結合即將帶來許多奇妙的新發現。期間,我在張老師指導下系統地研究了拓撲絕緣體的物理性質,並進一步把拓撲絕緣體推廣到拓撲超導體等新的拓撲量子態。   當時,我們研究的一個主要目的是要找到拓撲絕緣體之所以區別於其他材料的獨特性質。經過半年多的努力,我和張老師以及張老師的學生休斯(Taylor L. Hughes)終於從拓撲絕緣體的微觀理論中得到了正確的拓撲量子場論描述。
  • 祁曉亮: 我的拓撲絕緣體之路
    從這篇論文開始,我開始在張首晟老師的指導下,一步步走入拓撲絕緣體這個全新的領域。在這個領域中,拓撲學和簡單的絕緣體物理的結合即將帶來許多奇妙的新發現。期間,我在張老師指導下系統地研究了拓撲絕緣體的物理性質,並進一步把拓撲絕緣體推廣到拓撲超導體等新的拓撲量子態。   當時,我們研究的一個主要目的是要找到拓撲絕緣體之所以區別於其他材料的獨特性質。經過半年多的努力,我和張老師以及張老師的學生休斯(Taylor L. Hughes)終於從拓撲絕緣體的微觀理論中得到了正確的拓撲量子場論描述。
  • 基於kagome晶格聲學超材料的高階拓撲絕緣體
    該結構中的晶格表現為受聲學角態影響的量子化的偶極矩,改變角態可以控制受拓撲保護的局部諧振情況。該研究成果以《Acoustic higher-order topological insulator on a kagome lattice》為題發表在《Nature Materials》上。
  • 復旦大學物理學系張遠波課題組在本徵磁性拓撲絕緣體中觀測到量子...
    近日,復旦大學物理學系張遠波、王靖和中國科學技術大學物理系陳仙輝合作團隊首次通過實驗在本徵磁性拓撲絕緣體錳鉍碲(MnBi2Te4)中觀測到量子反常霍爾效應。該研究將為未來本徵材料體系中拓撲物理的研究開闢新思路。
  • 進展|Z2非平庸節線半金屬和高階拓撲絕緣體研究取得重要進展
    高階拓撲絕緣體(higher-order topological insulators) 在這次搜索中也無處遁形。人們定義: 一階拓撲絕緣體具有絕緣的d維體態,但有(d-1)維拓撲保護的金屬表面態; 二階拓撲絕緣體具有絕緣的d維體態和(d-1)維表面態,但有(d-2)維拓撲保護的金屬稜態;以此類推。所以常規的三維拓撲絕緣體,又可以被稱為三維的一階拓撲絕緣體。
  • 第一次成功地為拓撲絕緣體,構建出量子點接觸
    拓撲絕緣體是具有迷人特性的材料:電流僅沿其表面或邊緣流動,而材料的內部則表現為絕緣體。在拓撲量子阱中,導電態僅位於邊緣,這些邊緣態在量子點接觸處空間合併,這種接近使得研究邊緣狀態之間的潛在相互作用成為可能。這個實驗之所以能成功,是因為光刻方法取得了突破,它使科學家能夠在不損害拓撲材料的情況下,創造出令人難以置信的小結構。這項技術將使科學家們在不久的將來,在拓撲納米結構中發現令人印象深刻的新穎效果。
  • 2020年「復旦-中植科學獎」授予三位拓撲領域科學家
    來自英國、美國和中國的三位量子、拓撲領域科學家,獲得了2020年度「復旦—中植科學獎」。三位獲獎者為:英國皇家學會會員、英國布裡斯託大學教授麥可·貝裡(Sir Michael V. Berry),美國國家科學院院士、美國賓夕法尼亞大學教授查爾斯·凱恩(Charles L. Kane),中國科學院院士薛其坤。
  • 我國科學家找到實現高階拓撲絕緣體理論依據—新聞—科學網
    科技日報合肥5月6日電 (記者吳長鋒)記者從中國科大獲悉,該校合肥微尺度物質科學國家研究中心喬振華教授課題組與其合作者,在理論預言低維體系高階拓撲絕緣體方面取得新突破