有絲分裂後細胞中的線粒體動態調節神經發生
作者:
小柯機器人發布時間:2020/8/16 15:05:33
有絲分裂後細胞中的線粒體動態調節神經發生,這一成果由比利時魯汶大學Pierre Vanderhaeghen研究小組完成。該研究於2020年8月14日發表在《科學》上。
研究人員測試並操縱了小鼠和人類皮質神經發生過程中的線粒體動態。研究人員揭示了皮質幹細胞分裂後不久,註定要自我更新的子細胞經歷了線粒體融合,而那些保持高水平線粒體裂變的細胞則變成了神經元。
線粒體分裂的增加促進了神經元的命運,而有絲分裂後線粒體融合的誘導使子代細胞重新定向至自我更新。這在人類細胞倍增的有限時間窗口內發生,與其自我更新能力的增加相一致。
這些數據揭示了線粒體動態與細胞命運聯繫在一起的有絲分裂後命運可塑性時期。
據了解,神經幹細胞向神經元的轉化與細胞器的重塑有關,但是人們對這與命運變化是否以及如何因果聯繫的了解很少。
附:英文原文
Title: Mitochondrial dynamics in postmitotic cells regulate neurogenesis
Author: Ryohei Iwata, Pierre Casimir, Pierre Vanderhaeghen
Issue&Volume: 2020/08/14
Abstract: The conversion of neural stem cells into neurons is associated with the remodeling of organelles, but whether and how this is causally linked to fate change is poorly understood. We examined and manipulated mitochondrial dynamics during mouse and human cortical neurogenesis. We reveal that shortly after cortical stem cells have divided, daughter cells destined to self-renew undergo mitochondrial fusion, whereas those that retain high levels of mitochondria fission become neurons. Increased mitochondria fission promotes neuronal fate, whereas induction of mitochondria fusion after mitosis redirects daughter cells toward self-renewal. This occurs during a restricted time window that is doubled in human cells, in line with their increased self-renewal capacity. Our data reveal a postmitotic period of fate plasticity in which mitochondrial dynamics are linked with cell fate.
DOI: 10.1126/science.aba9760
Source: https://science.sciencemag.org/content/369/6505/858
Science:《科學》,創刊於1880年。隸屬於美國科學促進會,最新IF:41.037