歐拉公式的證明_歐拉公式推導過程

2020-11-23 電子發燒友

歐拉公式的證明_歐拉公式推導過程

發表於 2017-11-28 19:59:14

  在任何一個規則球面地圖上,用 R記區域個 數 ,V記頂點個數 ,E記邊界個數,則 R+ V- E= 2,這就是歐拉定理,它於1640年由Descartes首先給出證明 ,後來 Euler(歐拉)於1752年又獨立地給出證明,我們稱其為歐拉定理,在國外也有人稱其為Descartes定理。

  歐拉公式的證明

  

  這三個公式分別為其省略餘項的麥克勞林公式,其中麥克勞林公式為泰勒公式的一種特殊形式,在 的展開式中把x換成±ix。

  

  所以

  由此:#FormatImgID_0# , ,然後採用兩式相加減的方法得到: , 。這兩個也叫做歐拉公式。將 中的x取作π就得到:這個恆等式也叫做歐拉公式,它是數學裡最令人著迷的一個公式,它將數學裡最重要的幾個數字聯繫到了一起:兩個超越數:自然對數的底e,圓周率π;兩個單位:虛數單位i和自然數的單位1;以及被稱為人類偉大發現之一的0。數學家們評價它是「上帝創造的公式」。

  歐拉公式推導過程

  用拓樸學方法證明歐拉公式

  嘗歐拉公式:對於任意多面體(即各面都是平面多邊形並且沒有洞的立體),假 設F,E和V分別表示面,稜(或邊),角(或頂)的個數,那麼F-E+V=2.試一下用拓樸學方法證明關於多面體的面、稜、頂點數的歐拉公式。

  證明 如圖15(圖是立方體,但證明是一般的,是「拓樸」的):

  (1)把多面體(圖中①)看成表面是薄橡皮的中空立體。

  (2)去掉多面體的一個面,就可以完全拉開鋪在平面上而得到一個平面中的直線形,像圖中②的樣子。假設F′,E′和V′分別表示這個平面圖形的(簡單)多邊形、邊和頂點的個數,我們只須證明F′-E′+V′=1.

  (3)對於這個平面圖形,進行三角形分割,也就是說,對於還不是三角形的多邊形陸續引進對角線,一直到成為一些三角形為止,像圖中③的樣子。每引進一條對角線,F′和E′各增加1,而V′卻不變,所以F′-E′+V′不變。因此當完全分割成三角形的時候,F′-E′+V′的值仍然沒有變。有些三角形有一邊或兩邊在平面圖形的邊界上。

  (4)如果某一個三角形有一邊在邊界上,例如圖④中的△ABC,去掉這個三角形的不屬於其他三角形的邊,即AC,這樣也就去掉了△ABC.這樣F′和E′各減去1而V′不變,所以F′-E′+V′也沒有變。

  (5)如果某一個三角形有二邊在邊界上,例如圖⑤中的△DEF,去掉這個三角形的不屬於其他三角形的邊,即DF和EF,這樣就去掉△DEF.這樣F′減去1,E′減去2,V′減去1,因此F′-E′+V′仍沒有變。

  (6)這樣繼續進行,直到只剩下一個三角形為止,像圖中⑥的樣子。這時F′=1,E′=3,V′=3,因此F′-E′+V′=1-3+3=1.

  (7)因為原來圖形是連在一起的,中間引進的各種變化也不破壞這事實,因此最後圖形還是連在一起的,所以最後不會是分散在向外的幾個三角形,像圖中⑦那樣。

  (8)如果最後是像圖中⑧的樣子,我們可以去掉其中的一個三角形,也就是去掉1個三角形,3個邊和2個頂點。因此F′-E′+V′仍然沒有變。

  即F′-E′+V′=1

  成立,於是歐拉公式R+ V- E= 2。

打開APP閱讀更多精彩內容

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴

相關焦點

  • 淺析最美數學公式——歐拉公式之推導歸納
    本文是基於作者在高等數學和複變函數這兩門課程教學過程中的一些思考, 整理並總結了有關於大家熟知的歐拉公式在不同數學分支裡的詳細推導方法和推導過程, 以便為相關學者提供參考和借鑑。學習過高等數學的的人都學過歐拉公式, 還知道歐拉公式是指以歐拉命名的諸多公式之一。
  • 歐拉公式怎麼寫_歐拉公式的意義
    打開APP 歐拉公式怎麼寫_歐拉公式的意義 發表於 2017-11-28 19:40:32   歐拉公式將指數函數的定義域擴大到了複數域,建立和三角函數和指數函數的關係,被譽為「數學中的天橋」形式簡單,結果驚人,歐拉本人都把這個公式刻在皇家科學院的大門上,看來必須好好推敲一番。
  • 最美的公式——歐拉公式
    那麼問題來了,這麼厲害的歐拉公式是怎麼推導出來的呢?於是,我們就可以得到歐拉公式:e^ix=cosx+i sinx注意哦,這時候令x = π,化簡,就得到了歐拉恆等式:e^iπ + 1=0這就得出了最美的公式之一,歐拉公式
  • 最美的公式——歐拉恆等式
    今天小編就給大家介紹一個最美的公式歐拉恆等式要說歐拉公式,首先就得說說歐拉這位數學天才,歐拉是歷史上最多產的數學家,也是各領域(包含數學的所有分支及力學、光學、音響學、水利、天文、化學、醫藥等)最多著作的學者。
  • 材料力學知識點:歐拉公式推導過程
    令(3)變化過程①當P>Pcr時,在臨界平衡狀態時,由於產生的彎矩較大,變形要增大,會遠離臨界平衡狀態,y增大,進而彎矩繼續增大,就會一直遠離。。
  • 數學|歐拉公式的簡單證明
    一 什麼是歐拉公式在數學中,sin函數和cos函數是最近乎完美的周期函數,e是自然對數的底,i是數學界中唯一一個平方為負的數字,這幾者一般很少有聯繫,而歐拉公式則很完美的將它們聯繫在了一起,且關係簡單明了:圖1 歐拉公式相信很多人第一眼看到這個公式會覺得不可思議,三角函數怎麼會和指數函數有這麼直接的關係,現在不妨來看看它的一個簡單證明
  • 歐拉恆等式:完美的數學公式
    作為一個多產的數學家,歐拉貢獻不可估量,他提出了許多對現代數學不可或缺的概念。在歐拉的一生中,它出版了885份關於數學和其他學科的論文和書籍。即使是後來失明了,他仍然筆耕不輟。歐拉在失明之後還打趣地說:「現在我就更不會分心了。」 以勤奮著稱的歐拉,用他那驚人的記憶和心算能力彌補了視力的喪失。在歐拉一生豐碩的成果中,有一個以他名字命名的公式被譽為「上帝創造的公式」,那就是歐拉恆等式。
  • 初等數學的魅力:從棣莫弗公式推導出歐拉公式
    我們根據簡單的計算可以很容易地推導出棣莫弗公式,如下用初等的數學計算可得到接著我們可以得到有棣莫弗公式表示的正餘弦函數,如下形式所示,看上去比較複雜,其實是非常簡單的,這裡只是用更為直觀的方式表示出來接著我們進入正題:我們令nz等於一個常數v,即v=nz,這時n為無窮大數i,z為無窮小數,無窮大乘以無窮小可以看作一個常數v,z=v/i,所以我們得到sinz=v/i,cosz=1,這時就得到前面我們已經用初始的數學方法推導出了e的極限表示形式,即i等於無窮大時這裡的z就等於
  • 「上帝創造的公式」——歐拉恆等式
    歐拉恆等式是上帝的公式。我們凡人只能看看就行了,試圖理解它,上帝會笑的。
  • 歐拉恆等式:數學史上的真正完美公式!
    作為一個多產的數學家,歐拉貢獻不可估量,他提出了許多對現代數學不可或缺的概念。在歐拉的一生中,它出版了885份關於關於數學和其他學科的論文和書籍。即使是後來失明了,他仍然筆耕不輟。歐拉在失明之後還打趣地說:「現在我就更不會分心了。」 以勤奮著稱的歐拉,用他那驚人的記憶和心算能力彌補了視力的喪失。
  • 歐拉公式中的正弦展開式:沃利斯乘積
    沃利斯乘積,又稱沃利斯公式,由數學家約翰·沃利斯在1655年時發現。在那時,微積分尚未存在,而且有關數學收斂的分析工具也還未俱全,所以完成這證明較現今有相當的難度。從現在來看,從歐拉公式中的正弦展開式得到此乘積是必然的結果上述的公式一個是根據泰勒級數得到,一個是歐拉從方程的根推導得出,有異曲同工之妙,最終從歐拉公式中的正弦展開式得到沃利斯公式
  • 為什麼說歐拉公式是世界上最美的公式?欣賞歐拉公式的美學!
    不論是高等數學還是大學物理,歐拉公式都如影隨形。因為其重要性和劃時代意義,Euler Formula(歐拉公式)有著很多了不起的別稱,例如「上帝公式」、「最偉大的數學公式」、「數學家的寶藏」等等。這個發表於公元1748年的數學公式,將三角函數與復指數函數巧妙地關聯了起來。
  • 歐拉——數學界的英雄:歐拉公式為何被稱為世界上最優美的公式?
    他對數學的直覺與掌控是無與倫比的,一個優美的歐拉公式被評為世界上最完美的公式,在數學界基本上是沒有公式能與之媲美的了。如果非要找的話,物理界的質能方程E=mc^2和麥克斯韋方程組或許能與之相媲美。e=2.718128182…自然對數,代表了大自然的優美。
  • 歐拉公式
    e是自然對數的底,此式稱為歐拉(Euler)公式。e可以用計算方法定義為歐拉公式與三角函數的關係由泰勒級數展開
  • 風採演講——歐拉和歐拉公式
    今天我演講的主題是一個人物——歐拉。歐拉,瑞士數學家、自然科學家。1707年4月15日出生於瑞士的巴塞爾,1783年9月18日於俄國聖彼得堡去世。歐拉出生於牧師家庭,自幼受父親的影響。13歲時入讀巴塞爾大學,15歲大學畢業,16歲獲得碩士學位。歐拉是18世紀數學界最傑出的人物之一,他不但為數學界作出貢獻,更把整個數學推至物理的領域。
  • 歐拉公式,世界上最完美的公式
    1歐拉公式萊昂哈德·歐拉被認為是18
  • 歐拉公式——真正的宇宙第一公式
    歐拉公式是數學裡最令人著迷的公式之一,如機械波論、電磁學、波動光學、量子力學等匍匐在她的腳下;難怪物理學家查德·費曼驚呼:歐拉恆等式不但是「數學最奇妙的公式」,也是現代物理學的定量之跟,因為她把最基本的5個數學常數簡潔地連繫起來,而且也將物理學中的圓周運動、簡諧振動、機械波、電磁波、概率波等聯繫在了一起.
  • 歐拉公式的理解,看完就全懂了
    前期我們講了虛數i,今天我們分析最完美的公式歐拉公式,其實歐拉公式是以歐拉命名的諸多公式,還有很多哦,歐拉可是一位神一樣的人物,後面我們會專門介紹這位帥哥
  • 數學界最著名、最偉大、最美麗的公式之一——歐拉公式
    歐拉公式是什麼?歐拉公式是歐哈德·歐拉在十八世紀創造的,是數學界最著名、最美麗的公式之一。之所以如此,是因為它涉及到各種顯然非常不同的元素,比如無理數e、虛數和三角函數。從柯特公式到歐拉公式我們只需要在兩邊都應用指數。
  • 求和終結篇:歐拉-麥克勞林求和公式的拓展應用
    前一篇文章,我們了解了歐拉-麥克勞林公式的原理,它是歐拉和麥克勞林各自獨立發現的,這個公式提供了用積分求和分方法。能非常準確的計算離散形式下級數和的形式。將上式改寫成標準的公式,一次導數,二次導數,三次導數標準形式如下其中式子中的常數項為伯努利數如果將定積分的下限改為1,下圖左邊的式子就變成了右邊的樣式,且0次導數中的減號要變成加號,右邊式子的推導留給有興趣的朋友,但必須精通數學分析微積分所有知識,