請先欣賞下故事。
16世紀末至17世紀初的時候,當時在自然科學領域(特別是天文學)的發展上經常遇到大量精密而又龐大的數值計算,於是數學家們為了尋求化簡的計算方法而發明了對數。
德國的史蒂非(1487-1567)在1544年所著的《整數算術》中,寫出了兩個數列,左邊是等比數列(叫原數),右邊是一個等差數列(叫原數的代表,或稱指數,德文是Exponent ,可惜史提非並未作進一步探索,沒有引入對數的概念。
納皮爾對數值計算頗有研究。他所製造的「納皮爾算籌」,化簡了乘除法運算,其原理就是用加減來代替乘除法。 他發明對數的動機是為尋求球面三角計算的簡便方法,他依據一種非常獨等的與質點運動有關的設想構造出所謂對數方法,其核心思想表現為算術數列與幾何數列之間的聯繫。在他的1619年發表《奇妙的對數表的描述》中闡明了對數原理,後人稱為 納皮爾對數,記為Nap.㏒x,它與自然對數的關係為:
Nap.㏒x=10㏑(107/x)
由此可知,納皮爾對數既不是自然對數,也不是常用對數,與現今的對數有一定的距離。
瑞士的彪奇(1552-1632)也獨立地發現了對數,可能比納皮爾較早,但發表較遲(1620)。
英國的布裡格斯在1624年創造了常用對數。
1619年,倫敦斯彼得所著的《新對數》使對數與自然對數更接近(以e=2.71828...為底)。
對數的發明為當時社會的發展起了重要的影響,簡化了行星軌道運算問題。
正如科學家伽利略(1564-1642)說:「給我時間,空間和對數,我可以創造出一個宇宙」。
又如十八世紀數學家拉普拉斯( 1749-1827)亦提到:「對數用縮短計算的時間來使天文學家的壽命加倍」。
最早傳入我國的對數著作是《比例與對數》,它是由波蘭的穆尼斯(1611-1656)和我國的薛鳳祚在17世紀中葉合 編而成的。當時在lg2=0.3010中,2叫真數,0.3010叫做假數,真數與假數對列成表,故稱對數表。後來改用假數為對數」。
我國清代的數學家戴煦(1805-1860)發展了多種求對數的捷法,著有《對數簡法》(1845)、《續對數簡法》(1846)等。1854年,英國的數學家艾約瑟(1825-1905)看到這些著作後,大為嘆服。
當今中學數學教科書是先講「指數」,後以反函數形式引出「對數」的概念。但在歷史上,恰恰相反,對數概念不是來自指數,因為當時尚無分指數及無理指數的明確概念。
布裡格斯曾向納皮爾提出用冪指數表示對數的建議。1742年,J.威廉(1675-1749)在給G.威廉的《對數表》所寫的前言中作出指數可定義對數。
而歐拉在他的名著《無窮小分析尋論》(1748)中明確提出對數函數是指數函數的逆函數,和21世紀的教科書中的提法一致。
知識貴在分享,我們整理編輯了一下,如果涉及到版權請聯繫我們
動動手指,掃描下圖二維碼,關注趣味小課堂。